Он свел проблему разрешения к проблеме остановки и доказал, что она неразрешима с помощью его машины: нельзя определить алгоритмически, завершит ли данная машина Тьюринга свою работу в какой-то момент или нет. Чёрч и Тьюринг не соперничали; напротив, оба осознавали, что их модели, несмотря на формальные различия, были одинаково мощными, и объединили усилия.
* * *
КАК РАБОТАЕТ МАШИНА
Представим себе бесконечную ленту, на которой записаны входные символы некой задачи и на которой можно печатать. Машина Тьюринга содержит считывающее устройство, расположенное в определенной части ленты. Это считывающее устройство позволяет выполнять считывание и запись на ленту, а программа машины Тьюринга может перемещать считывающее устройство в заданное положение. Возможные состояния машины представляются посредством множества состояний Q. Программирование машины представляется в виде функции перехода, которая определяет новое состояние на основе текущего состояния и входного символа.
Формально машина Тьюринга определяется на основе кортежа из семи элементов. Кортеж — это упорядоченная последовательность элементов, то есть перечень ограниченного числа объектов. Кортежи используются для описания математических объектов, имеющих структуру. Обозначим кортеж, который будет обрабатывать наша машина Тьюринга, как
МТ = (Γ, Σ, Ь, Q, q0, f, F).
Его элементы определяются следующим образом.
• Γ — алфавит, символы которого записываются на ленте.
• Σ
• b
• Q — множество состояний.
• q0
• f — функция перехода. Для данного состояния и элемента, записанного на ленте, эта функция определяет новое состояние, записывает символ на ленте и перемещает считывающее устройство влево (I), вправо (D) или же оставляет неподвижным (Р). Таким образом, функция f является функцией вида f: Q x Γ —> Q x Γ х {I, D, Р}.
F
* * *
В апреле 1936 года американский математик Алонзо Чёрч из Принстонского университета опубликовал работу о проблеме разрешения. Чёрч пришел к тому же выводу, что и Тьюринг, доказав, что не все в математике является вычислимым.