Читаем Открытие без границ полностью

Сумма площадей всех прямоугольников, построенных по этому методу, будет очевидно меньше, чем площадь искомой фигуры. С увеличением числа прямоугольников их общая площадь будет все ближе к значению площади фигуры, ограниченной кривой. Это же построение можно повторить так, чтобы верхние основания прямоугольников находились над кривой.


* * *

ИНТЕГРИРОВАНИЕ «ОТ РУКИ»

Существует простое механическое устройство — интегратор, позволяющий автоматически вычислять площадь, ограниченную плоской непрерывной кривой. Оно напоминает устройства, используемые для измерения расстояний на картах, и состоит из небольшого колеса и счетчика числа оборотов, который указывает расстояние, пройденное колесом при перемещении по карте, например вдоль автомагистрали. Механический интегратор имеет схожий принцип действия. Если обвести интегратором замкнутую фигуру, ограниченную кривой, по контуру, счетчик укажет площадь этой фигуры. Это устройство используется при проектировании форм и образцов, так как позволяет определить, сколько материала потребуется для изготовления изделий.

* * *

Так мы гарантируем, что сумма площадей прямоугольников будет больше искомой площади. Теперь мы снова можем увеличить число прямоугольников, и сумма их площадей вновь будет приближаться к искомой, на этот раз сверху. Мы получим две последовательности площадей, приближающихся к искомой площади снизу и сверху соответственно. Так в схематичном и упрощенном виде происходит вычисление площадей. Похожий метод используется и для вычисления объемов.

Результаты сравниваются со значением, которое, как предполагается, должна иметь данная величина (напомним, что метод исчерпывания используется для проверки уже известного результата). С помощью оценок данной величины сверху и снизу мы подтверждаем, что если эти оценки превосходят искомую величину, это приводит к противоречию. Позднее, в XVII веке, этот метод получил название «апагогия», или «доведение до абсурда».

В любом случае в методе неизбежно рассматривается актуальная бесконечность, для чего в современном анализе выполняется переход к пределу. Если бы древние греки применили этот подход при решении этой и других схожих задач, то добились бы потрясающих результатов.


Кеплер


Кеплер был одним из первых математиков Возрождения, который занялся вычислением объемов, причем не совсем в обычных обстоятельствах: впервые он обратил внимание на эту задачу в тот самый день, когда сочетался вторым браком с Сюзанной Рейтингер (его первая жена скончалась годом ранее). Это был брак по расчету, так как Кеплер искал женщину, которая позаботилась бы о нем и его детях и вела быдомашнее хозяйство. Сюзанна, должно быть, понимала, насколько необычным характером отличался ее будущий муж, поскольку она не удивилась, когда он покинул свадебное торжество, чтобы подробно изучить, как трактирщик измеряет объем вина в бочках. Бочки не имели строго цилиндрическую форму, и объем измерялся с помощью мерного стержня, который опускался в них через отверстие в крышке.

Определив таким образом уровень вина в бочке, трактирщик узнавал, сколько его осталось. Результатом размышлений Кеплера стал вышедший в 1615 году трактат под названием «Новая стереометрия винных бочек». Для решения задачи Кеплер использовал метод неделимых, разработанный Архимедом. Можно сказать, что из задачи об объеме бочки вина впоследствии родился анализ бесконечно малых. Тем не менее следует отметить, что труды Кеплера в этой области носили скорее практический, чем теоретический характер, и в этом смысле их можно считать отчасти неполными. Например, для вычисления площади круга он рассматривал сумму площадей бесконечного числа треугольников, вершины которых совпадали с центром круга, а основания располагались на окружности. Аналогично для вычисления объема сферы он рассчитывал сумму объемов конусов, вершины которых совпадали с центром сферы, а основания находились на ее поверхности. С помощью этого метода Кеплер пришел к выводу, что объем сферы равен одной трети произведения ее радиуса на площадь поверхности. Корректность всех этих операций Кеплер обосновывал принципом непрерывности, который при использовании его метода вычисления объемов следовало принять за истину.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука