СВОБОДА МАТЕМАТИКИ
Можно сказать, что в настоящее время мечта Кантора о свободной математике полностью сбылась. По меньшей мере, никто и ничто (в так называемых цивилизованных странах) не ставит палки в колеса авторам математических теорий по философским или религиозным причинам. Сегодня в математике используются так называемые «большие кардиналы», которые столь велики, что рядом с ними трансфинитные числа Кантора кажутся карликами. Их определение очень сложно, хотя они строятся по правилам, схожим с теми, что применяются к алеф-числам: рассматривается последовательность множеств, включенных одно в другое, затем анализируются соответствующие множества их частей.
* * *
Кантор назвал алеф-нулем кардинальное число множества натуральных чисел |
В соответствии с этим
Однако числа алеф образуют возрастающую последовательность
Здесь Кантор сформулировал следующий вопрос: существует ли такой кардинал, который заключен между кардинальным числом множества натуральных чисел и континуумом? Каким-то образом ему удалось понять, что выполняется равенство
Иными словами, не существует множества, размер которого заключен между размером множества натуральных и вещественных чисел, — эта гипотеза называется континуум-гипотезой. Чтобы доказать ее, Кантору потребовалось приложить невероятные усилия. Не раз он считал, что континуум-гипотеза доказана, но ему так и не удалось сформулировать доказательство, которое его полностью устраивало бы.
Континуум-гипотезу безуспешно пытались доказать многие современники Кантора, в том числе Гильберт, Рассел и Цермело. Венгерский математик
В 1963 году американский математик
Несмотря на это некоторые до сих пор считают, что вопрос о доказательстве континуум-гипотезы окончательно не решен, так как ситуацию может изменить новая система аксиом, на которой будет выстроена теория множеств. Более того, пока не появится новая система аксиом, мы не можем гарантировать, что ясно представляем себе, что такое вещественное число.
Глава 6
Ад
Когда люди открывают новые земли, которые предстоит нанести на карты и описать в книгах, они платят за это свою цену, ведь ничего не дается даром. Некоторые благодаря своим открытиям обретают славу и известность, а другие умирают в абсолютном забвении, так и не узнав, какую важную роль они сыграли.