А.А. Локшин, Е.А. Иванова
УДК 51
ББК 22.1
Л73
Л73
Откуда мы знаем, что такое точка?: Пособие. – М.: МАКС Пресс, 2011. – 40 с.
ISBN 978-5-317-03565-5
УДК 51
ББК 22.1
ISBN 978-5-317-03565-5
© Локшин А.А., Иванова Е.А., 2011
СОДЕРЖАНИЕ
Предисловие4
1. Парадокс математической индукции6
2. Откуда мы знаем, что такое точка?7
3. Текстовые задачи: какой метод предпочесть?9
4. Мысленное моделирование при решении текстовых задач11
5. Усохшие проценты14
6. Правило произведения в комбинаторной задаче о маршрутах16
7. Об одном комбинаторном соотношении21
8. Чему равен нуль-факториал?22
9. Задача о составлении букета24
10. О некоторых трудностях в преподавании логики25
11. Несуществующие объекты и математическая логика27
12. Импликация и время28
13. Коварный куб31
14. Почему деление не дистрибутивно слева?32
15. Обобщенная диаграмма Эйлера33
16. Змей Горыныч и транзитивность35
Литература38
Список обозначений39
В брошюре рассмотрены некоторые вопросы из теории множеств, логики, комбинаторики и элементарной геометрии, недостаточно освещенные в имеющейся литературе и представляющие, на взгляд авторов, интерес для студентов пединститутов
(в особенности, для студентов факультетов начальных классов), школьников-старшеклассников и учителей математики.
Москва, 2011
1. ПАРАДОКС МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ
Метод математической индукции является, как известно, могучим инструментом, позволяющим доказывать многие математические утверждения, не поддающиеся иным методам. Соль метода в том, что он позволяет, так сказать, «опереться на недоказанное».
В простейшем случае действие метода выглядит так. Пусть имеется некоторое утверждение
Итак, доказывая истинность
Приведенная выше формулировка метода математической индукции может быть кратко записана, с использованием общепринятых математических терминов, в следующем виде:
(1)
Здесь формулы над чертой – так называемые
Парадокс, однако, заключается в том, что, «применяя математическую индукцию», мы пользуемся не методом (1), а другими соображениями.
Действительно, посмотрим, как фактически проводится доказательство «по индукции». Вначале доказывается справедливость
«Предположим, что
Без слова «некоторый» здесь обойтись невозможно, так как в противном случае наше предположение звучало бы так:
«Предположим, что
(2)
Заметим, что понятие «некоторый произвольный» не удается выразить с помощью математических кванторов