Однако, если допустить, что представление о точке
Замечание. Итак, “переменная” и ”бесконечность” – понятия , непосредственно базирующиеся на (по-видимому, врожденном) понятии “свобода воли”. А как обстоят дела с обычным (количественным) натуральным числом - неужели и оно опирается на понятие “свобода воли”? На наш взгляд , ответ на этот вопрос , как ни странно, положителен. Действительно, чтобы определить, например, (количественное) число “пять”, нам нужно мысленно соединить тоненькими ниточками пальцы руки с рассматриваемым набором предметов, устанавливая таким способом взаимно-однозначное соответствие между пальцами и этими предметами. Но эта процедура невозможна без представления о том, что ни одна мысленно проведенная нить не должна рваться и мы , путешествуя взглядом вдоль нее, должны побывать в
Цель этого параграфа – разобраться в том, при решении
С точки зрения педагога арифметический метод хорош тем, что он одновременно активизирует и наглядно-образное мышление ученика, и его логику. Алгебраический метод обычно быстрее ведет к цели, но в значительно меньшей степени нацелен на развитие мышления в широком смысле этого слова.
Решая задачу арифметическим способом, младший школьник, как правило, оперирует именованными числами, что соответствует наиболее развитому у него типу мышления – наглядно-образному.
В то же время решение задач алгебраическим способом минимизирует нагрузку на наглядно-образное мышление ребенка, решение текстовой задачи в основном сводится к оперированию символами. Научить ребенка такому оперированию, безусловно, важно. Однако, здесь имеются «подводные камни». Дело в том, что
Задача А. Мышка и птичка (игрушечные) вместе стоят 10 рублей. 5 мышек и 6 птичек стоят 56 рублей. Сколько стоят мышка и птичка по отдельности?
Решение 1(арифметическое).
1) Сколько комплектов игрушек (мышка плюс птичка) можно составить из 5 мышек и 6 птичек? – 5 комплектов.
2) Сколько стоят эти 5 комплектов игрушек? 5·10 = 50 (руб.)
3) Сколько птичек останется без мышек? – Одна.
4) Сколько стоит 1 птичка? 56 – 50 = 6 (руб.)
5) Сколько стоит одна мышка? 10 – 6 = 4 (руб.)
Ответ: мышка стоит 4 рубля, птичка стоит 6 рублей.
Решение 2(алгебраическое). Пусть
Фактически же, математические преобразования обычно проводят над системой, в которой имена величин опускаются; в данном случае – над системой
Умножая первое уравнение системы (*) на 5 и вычитая его из второго, получаем
Ответ: мышка стоит 4 рубля, птичка стоит 6 рублей.
Заметим, что действия при решении алгебраической системы (*), в сущности, те же, что и при решении этой задачи арифметическим способом. Как показывает наш опыт, дети в состоянии объяснить смысл каждого преобразования в процессе решения системы (*) на языке наглядных образов. В результате решение, полученное алгебраическим способом, способствует закреплению и упорядочению знаний, служит связующим звеном между наглядно-образным и абстрактным (символьным) мышлением. Рассмотрим теперь другую известную задачу (см., например [5]).
Задача Б. Десять мышек и птичек (птички и мышки настоящие, не игрушечные) съели 56 зерен. Каждая мышка съела 5 зерен, а каждая птичка – 6 зерен. Сколько было мышек и сколько птичек?
Решение(алгебраическое). Пусть