Читаем Откуда мы знаем, что такое точка? полностью

В этом параграфе мы обсудим один из интереснейших вопросов, лежащих на стыке математики и психологии. В первом параграфе мы уже сталкивались с операцией выбора некоторого произвольного элемента. В статье [2], где эта операция была подробно рассмотрена, отмечалось, в частности, что упомянутая операция неявно апеллирует к существованию у человека свободы воли. Тем самым, как было отмечено в [2], такое понятие как независимая переменная также базируется на предположении о существовании у человека свободы воли[2].

Для преподавателя математики этот вопрос вовсе не является второстепенным – например, на уроках геометрии невозможно обойтись без «выбора произвольной точки».

Любознательный ученик может тогда спросить:

– А что такое произвольная точка? Это то же самое, что случайно выбранная точка?

Ответ преподавателя будет, конечно, отрицательным. Заменив произвольно выбранную точку на точку, выбранную случайно, мы не сможем провести ни одного сколько-нибудь содержательного доказательства. Ведь случайно выбранная точка может совершенно случайно всегда оказываться, например, началом координат…

Но в то же время некоторая произвольно выбранная точка – это не то же самое, что каждая точка. Мы просто физически не можем выбрать каждую точку на плоскости – человек, как утверждают психологи, не способен одновременно уследить больше чем за семью объектами!

Преподаватель математики вовсе не должен перегружать своих учеников философскими размышлениями о наличии или отсутствии свободы воли у человека. Но понимать, что «выбор некоторого произвольного элемента»[3] – это операция, без которой математика беспомощна, на наш взгляд необходимо.

Похоже, однако, что представление о свободе воли является для человека врожденным, а сомнение в ее наличии есть некое «отклонение от нормы». К такому выводу нас подталкивают следующие обстоятельства.

Процитируем вначале учебник по высшей геометрии [3, с. 205]: «…точки, прямые и плоскости как образы нашего геометрического воображения не поддаются математическому описанию».

– Как же так? – может воскликнуть читатель, искушенный в математике. – А как же аксиомы Гильберта или аксиомы Клейна? Наконец, аксиомы Евклида? Разве они не определяют, что такое точка, прямая и плоскость?

– Конечно, определяют, – ответим мы. – Но только в некоем абстрактном пространстве, а не в пространстве наших зрительных образов. То есть определяют, но не то, что нужно…

Иными словами, с помощью логики, опираясь на информацию, поступающую от органов чувств, придти к понятию «точка», по-видимому, невозможно. Но откуда же тогда взялось это понятие?

Процитирую в этой связи статью Александра Маркова («Элементы», 21.06.10):

<<Ключевую роль в пространственном мышлении у млекопитающих играют три группы нейронов: «клетки места», «клетки направления» и «клетки координатной сетки». Две команды исследователей независимо друг от друга обнаружили, что у маленьких крысят, впервые в жизни отправившихся на прогулку, уже есть нормально работающие клетки первых двух типов, и только клетки третьего типа появляются немного позже. По-видимому, это означает, что восприятие пространства у млекопитающих в значительной мере является врожденным.>>

Любопытно сравнить результаты этих опытов с методикой обучения младших школьников понятию «точка» (сообщено авторам Н. Лукановой):

Если просто нарисовать на листе бумаги точку фломастером или ручкой, то у ребенка может создаться впечатление, что точка – это небольшая клякса, поэтому добавляют: «Точка не имеет толщины, точка – это место». Замечательно, что дети легко понимают, что именно имеется в виду.

Приведу теперь еще одну цитату из вышеупомянутой статьи А. Маркова:

<<… известно, что основные нейрологические механизмы пространственного восприятия у людей и крыс примерно одинаковы, поэтому результаты этих исследований почти наверняка приложимы к людям.>>

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное