Читаем Откуда мы знаем, что такое точка? полностью

В этом параграфе мы обсудим один из интереснейших вопросов, лежащих на стыке математики и психологии. В первом параграфе мы уже сталкивались с операцией выбора некоторого произвольного элемента. В статье [2], где эта операция была подробно рассмотрена, отмечалось, в частности, что упомянутая операция неявно апеллирует к существованию у человека свободы воли. Тем самым, как было отмечено в [2], такое понятие как независимая переменная также базируется на предположении о существовании у человека свободы воли[2].

Для преподавателя математики этот вопрос вовсе не является второстепенным – например, на уроках геометрии невозможно обойтись без «выбора произвольной точки».

Любознательный ученик может тогда спросить:

– А что такое произвольная точка? Это то же самое, что случайно выбранная точка?

Ответ преподавателя будет, конечно, отрицательным. Заменив произвольно выбранную точку на точку, выбранную случайно, мы не сможем провести ни одного сколько-нибудь содержательного доказательства. Ведь случайно выбранная точка может совершенно случайно всегда оказываться, например, началом координат…

Но в то же время некоторая произвольно выбранная точка – это не то же самое, что каждая точка. Мы просто физически не можем выбрать каждую точку на плоскости – человек, как утверждают психологи, не способен одновременно уследить больше чем за семью объектами!

Преподаватель математики вовсе не должен перегружать своих учеников философскими размышлениями о наличии или отсутствии свободы воли у человека. Но понимать, что «выбор некоторого произвольного элемента»[3] – это операция, без которой математика беспомощна, на наш взгляд необходимо.

Похоже, однако, что представление о свободе воли является для человека врожденным, а сомнение в ее наличии есть некое «отклонение от нормы». К такому выводу нас подталкивают следующие обстоятельства.

Процитируем вначале учебник по высшей геометрии [3, с. 205]: «…точки, прямые и плоскости как образы нашего геометрического воображения не поддаются математическому описанию».

– Как же так? – может воскликнуть читатель, искушенный в математике. – А как же аксиомы Гильберта или аксиомы Клейна? Наконец, аксиомы Евклида? Разве они не определяют, что такое точка, прямая и плоскость?

– Конечно, определяют, – ответим мы. – Но только в некоем абстрактном пространстве, а не в пространстве наших зрительных образов. То есть определяют, но не то, что нужно…

Иными словами, с помощью логики, опираясь на информацию, поступающую от органов чувств, придти к понятию «точка», по-видимому, невозможно. Но откуда же тогда взялось это понятие?

Процитирую в этой связи статью Александра Маркова («Элементы», 21.06.10):

<<Ключевую роль в пространственном мышлении у млекопитающих играют три группы нейронов: «клетки места», «клетки направления» и «клетки координатной сетки». Две команды исследователей независимо друг от друга обнаружили, что у маленьких крысят, впервые в жизни отправившихся на прогулку, уже есть нормально работающие клетки первых двух типов, и только клетки третьего типа появляются немного позже. По-видимому, это означает, что восприятие пространства у млекопитающих в значительной мере является врожденным.>>

Любопытно сравнить результаты этих опытов с методикой обучения младших школьников понятию «точка» (сообщено авторам Н. Лукановой):

Если просто нарисовать на листе бумаги точку фломастером или ручкой, то у ребенка может создаться впечатление, что точка – это небольшая клякса, поэтому добавляют: «Точка не имеет толщины, точка – это место». Замечательно, что дети легко понимают, что именно имеется в виду.

Приведу теперь еще одну цитату из вышеупомянутой статьи А. Маркова:

<<… известно, что основные нейрологические механизмы пространственного восприятия у людей и крыс примерно одинаковы, поэтому результаты этих исследований почти наверняка приложимы к людям.>>

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука