Читаем Откуда мы знаем, что такое точка? полностью

x + y = 10 (животных), 5x + 6y = 56 (зерен). Опуская имена величин, приходим к системе

x + y = 10, 5x + 6y = 56. (**)

Решая ее, получаем: x = 4, y = 6.

Ответ: 4 мышки, 6 птичек.

Система (**) формально совпадает с системой (*) и решается тем же способом, что и система (*). Однако, как показывает наш опыт, дети, решив сначала задачу А алгебраическим способом и дав своему решению правильное истолкование на языке наглядных образов, затруднялись объяснить смысл аналогичных преобразований системы (**). Некоторые говорили так: «Нужно взять пять комплектов животных и вычесть их из 56 зерен…» Причина затруднений, очевидно, была в том, что уравнения системы (**), в отличие от системы (*), содержат величины разных наименований.

На наш взгляд, на начальном этапе обучения область применения алгебраического метода должна быть ограничена текстовыми задачами, решение которых не приводит с системам, содержащим величины разных наименований.

4. МЫСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРИ РЕШЕНИИ ТЕКСТОВЫХ ЗАДАЧ

Моделирование «в отрезках», используемое в системе Л.Г. Пе-

терсон, существенно облегчает детям понимание текстовых

задач, в значительной степени устраняет случайное манипулирование числовыми данными.

В то же время, у некоторых детей складывается представление о том, что моделирование в отрезках есть универсальный метод, пригодный для решения «всех задач».

Мы ограничимся здесь рассмотрением текстовых задач для начальной школы, не включающим в себя задачи «на движение».

Эти задачи, как правило, сводятся к системе двух уравнений с двумя неизвестными.

Задача 1. В первый день портной сшил несколько костюмов, а во второй день сшил их в три раза больше. Сколько костюмов сшил портной в первый день, если за два дня он сшил их 16?

Решение. Пусть х – количество костюмов, сшитых в первый день, у – количество костюмов, сшитых во второй день. В результате имеем систему из двух уравнений специального вида:

у = 3х, (1)

х + у = 16. (2)

Совершенно очевидно, что алгебраическая процедура решения этой системы в точности соответствует процедуре решения при моделировании «в отрезках» (см. рис. 4.1).

Рис. 4.1

Однако, научить ребенка мыслить – это, в сущности, научить его строить разнообразные модели. Наш педагогический опыт показывает, что желательно познакомить детей с задачами, для которых модели «в отрезках» не работают и которые, тем не менее, могут быть решены с помощью несложных и наглядных рассуждений. (Что касается алгебраического подхода к решению текстовых задач, то он, позволяя быстро получить ответ при помощи стандартных операций с символами, не способствует развитию образного и логического мышления.)

Задача 2 (см., например, [5]). Когда на каждую елку село по одному соловью, то один соловей остался без елки. А когда соловьи расселись на елках парами, то одна елка осталась без соловьев. Сколько было елок и сколько было соловьев?

Решение алгебраическое. Пусть х – количество соловьев, у – количество елок. В результате имеем систему из двух уравнений:

х = у + 1, (3)

х = (у – 1)·2. (4)

Подставляя х из (3) в (4), получаем

у + 1 = 2у – 2, (4)

откуда у = 3, х = 4.

Попробуем теперь решить эту же задачу при помощи «моделирования в отрезках». Соотношение (3), конечно, может быть изображено графически; однако, после того как масштаб на рисунке, изображающем соотношение (3), выбран, соотношение (4) изобразить «в отрезках» уже не удается. (Точно так же без предварительных алгебраических преобразований не удается изобразить «в отрезках» и равенство (4).)

Решение арифметическое (основанное на мысленном моделировании).

1. Представим себе ряд из нескольких елок. На каждой сидит по соловью. Один соловей – «лишний», он висит в воздухе рядом с последней елкой – для него не хватило елки.

2. Пересадим «лишнего» соловья на первую елку, на ней теперь два соловья.

3. Пересадим теперь соловья с последней елки на вторую елку. На второй елке теперь тоже два соловья. А на последней елке – ни одного!

4. Никакие елки, кроме первой, второй и последней уже не нужны. Трех елок хватило, чтобы выполнить все условия задачи.

Ответ: три елки, четыре соловья.

В заключение приведем еще одну задачу, также не допускающую моделирование «в отрезках», но легко решаемую при помощи мысленного моделирования.

Задача 3. В школьном саду посадили клены по 16 штук в каждом ряду и столько же лип по 20 штук в каждом ряду, причем рядов получилось на 2 меньше. Во сколько рядов посажены клены?

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное