Читаем Откуда мы знаем, что такое точка? полностью

x + y = 10 (животных), 5x + 6y = 56 (зерен). Опуская имена величин, приходим к системе

x + y = 10, 5x + 6y = 56. (**)

Решая ее, получаем: x = 4, y = 6.

Ответ: 4 мышки, 6 птичек.

Система (**) формально совпадает с системой (*) и решается тем же способом, что и система (*). Однако, как показывает наш опыт, дети, решив сначала задачу А алгебраическим способом и дав своему решению правильное истолкование на языке наглядных образов, затруднялись объяснить смысл аналогичных преобразований системы (**). Некоторые говорили так: «Нужно взять пять комплектов животных и вычесть их из 56 зерен…» Причина затруднений, очевидно, была в том, что уравнения системы (**), в отличие от системы (*), содержат величины разных наименований.

На наш взгляд, на начальном этапе обучения область применения алгебраического метода должна быть ограничена текстовыми задачами, решение которых не приводит с системам, содержащим величины разных наименований.

4. МЫСЛЕННОЕ МОДЕЛИРОВАНИЕ

ПРИ РЕШЕНИИ ТЕКСТОВЫХ ЗАДАЧ

Моделирование «в отрезках», используемое в системе Л.Г. Пе-

терсон, существенно облегчает детям понимание текстовых

задач, в значительной степени устраняет случайное манипулирование числовыми данными.

В то же время, у некоторых детей складывается представление о том, что моделирование в отрезках есть универсальный метод, пригодный для решения «всех задач».

Мы ограничимся здесь рассмотрением текстовых задач для начальной школы, не включающим в себя задачи «на движение».

Эти задачи, как правило, сводятся к системе двух уравнений с двумя неизвестными.

Задача 1. В первый день портной сшил несколько костюмов, а во второй день сшил их в три раза больше. Сколько костюмов сшил портной в первый день, если за два дня он сшил их 16?

Решение. Пусть х – количество костюмов, сшитых в первый день, у – количество костюмов, сшитых во второй день. В результате имеем систему из двух уравнений специального вида:

у = 3х, (1)

х + у = 16. (2)

Совершенно очевидно, что алгебраическая процедура решения этой системы в точности соответствует процедуре решения при моделировании «в отрезках» (см. рис. 4.1).

Рис. 4.1

Однако, научить ребенка мыслить – это, в сущности, научить его строить разнообразные модели. Наш педагогический опыт показывает, что желательно познакомить детей с задачами, для которых модели «в отрезках» не работают и которые, тем не менее, могут быть решены с помощью несложных и наглядных рассуждений. (Что касается алгебраического подхода к решению текстовых задач, то он, позволяя быстро получить ответ при помощи стандартных операций с символами, не способствует развитию образного и логического мышления.)

Задача 2 (см., например, [5]). Когда на каждую елку село по одному соловью, то один соловей остался без елки. А когда соловьи расселись на елках парами, то одна елка осталась без соловьев. Сколько было елок и сколько было соловьев?

Решение алгебраическое. Пусть х – количество соловьев, у – количество елок. В результате имеем систему из двух уравнений:

х = у + 1, (3)

х = (у – 1)·2. (4)

Подставляя х из (3) в (4), получаем

у + 1 = 2у – 2, (4)

откуда у = 3, х = 4.

Попробуем теперь решить эту же задачу при помощи «моделирования в отрезках». Соотношение (3), конечно, может быть изображено графически; однако, после того как масштаб на рисунке, изображающем соотношение (3), выбран, соотношение (4) изобразить «в отрезках» уже не удается. (Точно так же без предварительных алгебраических преобразований не удается изобразить «в отрезках» и равенство (4).)

Решение арифметическое (основанное на мысленном моделировании).

1. Представим себе ряд из нескольких елок. На каждой сидит по соловью. Один соловей – «лишний», он висит в воздухе рядом с последней елкой – для него не хватило елки.

2. Пересадим «лишнего» соловья на первую елку, на ней теперь два соловья.

3. Пересадим теперь соловья с последней елки на вторую елку. На второй елке теперь тоже два соловья. А на последней елке – ни одного!

4. Никакие елки, кроме первой, второй и последней уже не нужны. Трех елок хватило, чтобы выполнить все условия задачи.

Ответ: три елки, четыре соловья.

В заключение приведем еще одну задачу, также не допускающую моделирование «в отрезках», но легко решаемую при помощи мысленного моделирования.

Задача 3. В школьном саду посадили клены по 16 штук в каждом ряду и столько же лип по 20 штук в каждом ряду, причем рядов получилось на 2 меньше. Во сколько рядов посажены клены?

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука