Благодаря локальной природе физических взаимодействий координатный базис часто и является предпочтительным с точки зрения декогеренции для кинетических степеней свободы. Именно поэтому намного проще готовить объекты в состоянии с определенной координатой, чем с определенным импульсом, хотя математически оба случая равноправны. Аналогичным образом можно объяснить, почему суперпозиции мертвых и живых кошек никогда не наблюдаются в природе, хотя математически эти состояния не менее «легитимны», чем любая из составляющих этой суперпозиции. Среда постоянно измеряет положение различных частей тела кошки, взаимодействуя с ними. Поскольку результаты этих измерений содержат информацию о том, мертва кошка или жива, любая когерентная суперпозиция этих состояний мгновенно декогерирует. Иными словами, предпочтительный для декогеренции базис пространства состояний кошки, каким бы он ни был, не включает в себя суперпозиций мертвых и живых состояний.
Для внутренних же состояний квантовых объектов, как и для движения в микроскопическом масштабе, такого как перемещение электронов в атомах, координатный базис не является предпочтительным с точки зрения декогеренции. Дело в том, что электростатические взаимодействия, которые приводят к декогеренции, обычно вызываются объектами, находящимися на более далеких расстояниях, нежели размер самого атома — а следовательно, в масштабе атомных расстояний уже не могут рассматриваться как локальные.
Гораздо более перспективным кандидатом на роль предпочтительного с точки зрения декогеренции базиса для внутренних состояний является собственный базис оператора энергии, т. е. гамильтониан. Это следствие адиабатической теоремы (отступление 2.4). С одной стороны, поскольку энергетические уровни электронов в атомах довольно далеки один от другого (разд. 4.4), поля, возникающие в ходе столкновения, как правило, достаточно «гладки» для того, чтобы атом, первоначально находившийся в энергетическом собственном состоянии, в этом состоянии и остался[66]
. С другой стороны, столкновение непредсказуемым образом повлияет наОтступление 2.4.
Адиабатическая теоремаПредположим, что в момент времени
В качестве визуального примера рассмотрим следующий эксперимент, который можно провести дома. Поместите компас между полюсами подковообразного магнита. Стрелка встанет вдоль линий его магнитного поля. Теперь, если мы будем медленно поворачивать магнит, стрелка будет следовать за ним, сохраняя ориентацию вдоль силовой линии. Если же мы повернем магнит быстро или если магнит окажется слабым, стрелка потеряет свою настроенность на него, и ей потребуется некоторое время, чтобы вновь настроиться. Это, по существу, и есть адиабатическая теорема.
Условие адиабатичности можно приблизительно сформулировать как
где D — минимальное расстояние между