35. Van de Water J., Chaib De Mares M., Dixon G. B., Raina J. B., Willi B. L., Bourne D. G., van Oppen M. J. H. (2018). Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reef-building coral. Mol. Ecol., 27, 1065–1080.
36. Du X., Larsen J., Li M., Walter A., Slavetinsky C., Both A., Sanchez Carballo P. M., Stegger M., Lehmann E., Liu Y., Liu J., Slavetinsky J., Duda K. A., Krismer B., Heilbronner S., Weidenmaier C., Mayer C., Rohde H., Winstel V., Peschel A. (2021). Staphylococcus epidermidis clones express Staphylococcus aureus-type wall teichoic acid to shift from a commensal to pathogen lifestyle. Nat Microbiol. May 24.
37. Reshef L., Koren O., Loya Y., Zilber-Rosenberg I., Rosenberg E. (2006). The coral probiotic hypothesis. Environ. Microbiol., 8, 2068–2073.
38. Golberg K., Pavlov V., Marks R. S., Kushmaro A. (2013). Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling, 29, 669–682.
39. Zhou G., Zhou Y., Chen X. (2017). New insight into inter-kingdom communication: Horizontal transfer of mobile small RNAs. Front. Microbiol., 8, 768.
40. Zhang T., Zhao Y. L., Zhao J. H., Wang S., Jin Y., Chen Z. Q., Fang Y. Y., Hua C. L., Ding S. W., Guo H. S. (2016). Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat. Plants, 2, 16153.
41. Cai Q., Qiao L., Wang M., He B., Lin F.M. (2018). Palmquist, J.; Huang, S.D.; Jin, H. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science, 360, 1126–1129
42. Li W., Li C., Li S., Peng, M. (2017). Long noncoding RNAs that respond to Fusarium oxysporum infection in ‘Cavendish’ banana (Musa acuminata). Sci. Rep., 7, 16939.
43. Hou Y., Zhai Y., Feng L., Karimi H. Z., Rutter B. D., Zeng L., Choi D. S., Zhang B., Gu W., Chen X., Ye W., Innes R. W., Zhai J., Ma W. (2019). A Phytophthora Effector Suppresses Trans-Kingdom RNAi to Promote Disease Susceptibility. Cell Host Microbe. Jan 9; 25 (1): 153–165.
44. Tatematsu M., Funami K., Seya T., Matsumoto M. (2018). Extracellular RNA sensing by pattern recognition receptors. J. Innate Immun., 10, 398–406.
45. Zhang Z. M., Zhang A. R., Xu M., Lou J., Qiu W. Q. (2017). TLR-4/miRNA-32-5p/FSTL1 signaling regulates mycobacterial survival and inflammatory responses in Mycobacterium tuberculosis-infected macrophages. Exp. Cell Res., 352, 313–321.
46. Li N., Xu X., Xiao B., Zhu E. D., Li B. S., Liu Z., Tang B., Zou Q. M. Liang H. P. Mao X. H. (2012). H. pylori related proinflammatory cytokines contribute to the induction of miR-146a in human gastric epithelial cells. Mol. Biol. Rep., 39, 4655–4661.
47. Gu H., Zhao C., Zhang T., Liang H., Wang X. M., Pan Y., Chen X., Zhao Q., Li D., Liu F., Zhang C. Y., Zen K. (2017). Salmonella produce microRNA-like RNA fragment Sal-1 in the infected cells to facilitate intracellular survival. Sci. Rep., 7, 2392.
48. Zhao C., Zhou Z., Zhang T., Liu F., Zhang C. Y., Zen K., Gu H. (2017). Salmonella small RNA fragment Sal-1 facilitates bacterial survival in infected cells via suppressing iNOS induction in a microRNA manner. Sci. Rep., 7, 16979.
49. Babatunde K. A., Mbagwu S., Hernandez-Castaneda M. A., Adapa S. R., Walch M., Filgueira L., Falquet L., Jiang R. H. Y., Ghiran I. Mantel P. Y. (2018). Malaria infected red blood cells release small regulatory RNAs through extracellular vesicles. Sci. Rep., 8, 884.
50. Wu Z., Wang L., Li J., Wang L., Wu Z., Sun X. (2018). Extracellular vesicle-mediated communication within host-parasite interactions. Front. Immunol., 9, 3066.
51. Dandewad V., Vindu A., Joseph J., Seshadri V. (2019). Import of human miRNA-RISC complex into Plasmodium falciparum and regulation of the parasite gene expression. J. Biosci., 44, 50.
52. Teng Y., Ren Y., Sayed M., Hu X., Lei C., Kumar A., Hutchins E., Mu J., Deng Z., Luo C., Sundaram K., Sriwastva M. K., Zhang L., Hsieh M., Reiman R., Haribabu B., Yan J., Jala V. R., Miller D. M., Van Keuren-Jensen K., Merchant M. L., McClain C. J., Park J. W., Egilmez N. K., Zhang H. G. (2018). Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota. Cell Host Microbe. Nov 14; 24 (5): 637–652.
Глава XI. Новая надежда повстанцев
Обоснованная познанием эволюция