9. Pietschke C., Treitz C., Forêt S., Schultze A., Künzel S., Tholey A., Bosch T. C. G., Fraune S. (2017). Host modification of a bacterial quorum-sensing signal induces a phenotypic switch in bacterial symbionts. Proc. Natl Acad. Sci. USA 114, e8488–E8497.
10. Harder T., Campbell A. H., Egan S., Steinberg P. D. (2012). Chemical mediation of ternary interactions between marine holobionts and their environment as exemplified by the red alga Delisea pulchra. J. Chem. Ecol. 38, 442–450.
11. Chun C. K., Ozer E. A., Welsh M. J., Zabner J., Greenberg, E. P. (2004). Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natl Acad. Sci. USA 101, 3587–3590.
12. Smith A. C. et al. (2017). Albumin inhibits Pseudomonas aeruginosa quorum sensing and alters polymicrobial interactions. Infect. Immun. 85, e00116–17.
13. Peterson M. M. et al. (2008). Apolipoprotein B is an innate barrier against invasive Staphylococcus aureus infection. Cell Host Microbe 4, 555–566.
14. Cornforth D. M. et al. (2018). Pseudomonas aeruginosa transcriptome during human infection. Proc. NatlAcad. Sci. USA 115, E5125–E5134.
15. Li L.-J., Leng R.-X., Fan Y.-G., Pan H.-F., Ye D.-Q. (2017). Translation of noncoding RNAs: Focus on lncRNAs, pri-miRNAs and circRNAs. Experimental Cell Research. 361, 1–8.
16. Dinger M. E., Amaral P. P., Mercer T. R., Mattick J. S. (2009). Pervasive transcription of the eukaryotic genome: Functional indices and conceptual implications. Brief. Funct. Genom. Proteom., 8, 407–423.
17. Lybecker M., Bilusic I., Raghavan R. (2014). Pervasive transcription: Detecting functional RNAs in bacteria. Transcription, 5, e944039.
18. Kapranov P., Cheng J., Dike S., Nix D. A., Duttagupta R., Willingham A. T., Stadler P. F., Hertel J., Hackermueller J., Hofacker I. L., Bell I., Cheung E., Drenkow J., Dumais E., Patel S., Helt G., Ganesh M., Ghosh S., Piccolboni A., Sementchenko V., Tammana H., Gingeras T.R. (2007). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316, 1484–1488.
19. Ophinni Y., Palatini U., Hayashi Y., Parrish N. F. (2019). piRNA-Guided CRISPR-like Immunity in Eukaryotes. Trends in Immunology. 40, 998–1010.
20. Wang M., Yu F., Wu W., Zhang Y., Chang W., Ponnusamy M., Wang K., Li P. (2017). Circular RNAs: A novel type of non-coding RNA and their potential implications in antiviral immunity. Int. J. Biol. Sci. 13, 1497–1506.
21. Huang C., Shan G. (2015). What happens at or after transcription: Insights into circRNA biogenesis and function. Transcription, 6, 61–64.
22. Sarropoulos I., Marin R., Cardoso-Moreira M., Kaessmann H. (2019). Developmental dynamics of lncRNAs across mammalian organs and species. Nature, 571, 510–514.
23. Holdt M. L., Kohlmaier A., Teupser D. (2017). Molecular roles and function of circular RNAs in eukaryotic cells. Cell. Mol. Life Sci.
24. Carrier M. C., Lalaouna D., Masse E. (2018). Broadening the definition of bacterial small RNAs: Characteristics and mechanisms of action. Annu. Rev. Microbiol., 72, 141–161.
25. Choi J. W., Kim S. C., Hong S. H., Lee H. J. (2017). Secretable small RNAs via outer membrane vesicles in periodontal pathogens. J. Dent. Res., 96, 458–466.
26. Valadi H., Ekstrom K., Bossios A., Sjostrand M., Lee J. J., Lotvall J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 9, 654–659.
27. Thomou T., Mori M. A., Dreyfuss J. M., Konishi M., Sakaguchi M., Wolfrum C., Rao T. N., Winnay J. N., Garcia-Martin R., Grinspoon S. K., Gorden P., Kahn C. R. (2017). Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 542, 450–455.
28. Kalra H., Drummen G. P., Mathivanan S. (2016). Focus on extracellular vesicles: Introducing the next small big thing. Int. J. Mol. Sci., 17, 170.
29. Kim J. H., Lee J., Park J., Gho Y. S. (2015). Gram-negative and Gram-positive bacterial extracellular vesicles. Semin. Cell Dev. Biol., 40, 97–104.
30. Leitão A. L., Costa M. C., Gabriel A. F., Enguita F. J. (2020). Interspecies Communication in Holobionts by Non-Coding RNA Exchange. Int. J. Mol. Sci., 21, 2333.
31. De Lay N., Schu D. J., Gottesman S. (2013). Bacterial small RNA-based negative regulation: Hfq and its accomplices. J. Biol. Chem., 288, 7996–8003.
32. Nguyen Q., Iritani A., Ohkita S., Vu B. V., Yokoya K., Matsubara A., Ikeda K. I., Suzuki N., Nakayashiki H. (2018). A fungal Argonaute interferes with RNA interference. Nucleic Acids Res., 46, 2495–2508.
33. Liu S., da Cunha A. P., Rezend R. M., Cialic R., Wei Z., Bry L., Comstock L. E., Gandhi R., Weiner H. L. (2016). The host shapes the gut microbiota via fecal MicroRNA. Cell Host Microbe, 19, 32–43.
34. Greer R., Dong X., Morgun A., Shulzhenko N. (2016). Investigating a holobiont: Microbiota perturbations and transkingdom networks. Gut Microbes, 7, 126–135.