Помимо патогенных и условно-патогенных микроорганизмов, демонстрирующих наиболее выраженные сдвиги в характеристиках первазивной транскрипции, для модельных животных и человека показан и интенсивный обмен опосредуемой нкРНК информацией между хозяином и его микробиотой, в первую очередь кишечной. миРНК из клеток кишечного эпителия могут стимулировать рост некоторых представителей нормальной микрофлоры кишечника, комплиментарно связываясь с транскриптами важных для размножения РНК бактерий:
Мы видим, что во взаимодействиях внутри сложных систем макроорганизмов и связанных с ними микроорганизмов постоянно обнаруживаются принципиально новые каналы коммуникаций. Вскрытая всеобъемлющая сеть нкРНК-опосредованных коммуникаций, пронизывающая, похоже, все живое, вообще может быть прямым наследием первичного пула некодирующих «структурных» нуклеиновых кислот или РНК мира, в более принятом наименовании, на которую впоследствии были нанизаны и которую расщепили на отдельные сегменты остальные, более новые, самоусложняющиеся молекулярно-биологические механизмы.
Представляется, что именно концепция информационных сетей является наиболее удобной и перспективной формой понимания живого, где информационные сети играют роль подвижного несущего каркаса. Динамика этого каркаса – причина любого биологического развития, начиная от возникновения жизни и включая его наиболее крупномасштабную форму – эволюцию, а также причина и частных форм развития отдельных организмов: от рождения до смерти, через адаптационные успехи и неудачи, воспринимаемые, соответственно, как состояния здоровья и болезни, страдания и благополучия.
Библиографический список
1. Engebrecht J., Nealson K., Silverman M. (1983) Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri. Cell 32, 773–781.
2. Bassler B. L., Wright M., Silverman M. (1994). Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol. 13, 273–286.
3. Mukherjee S., Bossier B. L. (2019). Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17, 371–382.
4. Long Т., Tu K. C., Wang Y., Mehta P., Ong N. P., Bassler B. L., Wingreen N. S. (2009). Quantifying the Integration of Quorum-Sensing Signals with Single-Cell Resolution // PLoS Biology. V. 7 (3). e1000068.
5. Thompson J., Oliveira R., Djukovic A., Ubeda C., Xavier K. (2015). Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. 10, 1861–1871.
6. Hsiao A., Ahmed A. M., Subramanian S., Griffin N. W., Drewry L. L., Petri W. A. Jr, Haque R., Ahmed T., Gordon J. I. (2014). Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515, 423–426.
7. Papenfort K., Silpe J.E., Schramma K.R., Cong J.P., Seyedsayamdost M. R., Bassler B. L. (2017). A Vibrio cholerae autoinducer receptor pair that controls biofilm formation. Nat. Chem. Biol. 13, 551–557.
8. Piewngam P., Zheng Y., Nguyen T. H., Dickey S. W., Joo H. S, Villaruz A. E., Glose K. A., Fisher E. L., Hunt R. L., Li B., Chiou J., Pharkjaksu S., Khongthong S., Cheung G. Y. C., Kiratisin P., Otto M. (2018). Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562, 532–537.