Как известно, любой случайный по форме сигнал в конце концов может быть с определенной точностью разложен на множество волновых, то есть регулярных компонентов, что требует, однако, чрезвычайного усложнения вычислительных возможностей системы и, соответственно, определяющих ее невероятной емкости информационной тары и/или быстродействия системы. Если цели системы достигаются более грубым моделированием случайных сигналов, то система, несомненно, воспользуется этим. Этот механизм можно сравнить с принципом
Для одноклеточных, в особенности прокариот, ресурсы памяти (информационная тара) в значительной степени распределены в экосистеме, что замедляет время отклика. При этом для бактерий относительно большое число вариаций окружающей среды оказывается имеющими «особую причину» и вызывает соответствующую реакцию. Эта реакция, как правило, временная и субоптимизированная. Одновременно основа оперативного хранилища данных с быстрым откликом – собственный геном бактерий – должен быть достаточно открыт для восприятия внешней информации, например в форме горизонтального переноса генов или обратной передачи вовне своей внутренней информации. Также геном должен быть открыт для внутренней изменчивости, то есть обладать точно выстроенным уровнем генетической нестабильности, своеобразной «тональностью» генома.
Открытость и нестабильность прокариотического генома позволяют распределять издержки обработки информации в очень широких информационных полях, но не дают в полной мере воспользоваться преимуществами многоклеточности, работающие элементы которой обнаруживаются, например, в биопленках: в первую очередь специализация слоев и связанная с ней программируемая клеточная смерть.
Биопленки тем не менее для задействованных в них бактерий в значительной степени снижают издержки, связанные с вариациями по общим причинам. Одной из причин неспособности прокариот создать действительно многоклеточные организмы можно считать «бульонность» распределения информации (УПС: глава V
) в прокариотических системах: все клетки в них остаются более-менее равны.Тоньше управляемые открытость и нестабильность эукариотического генома предопределяют неизбежность сравнительно очень узкого генетического разнообразия эукариот («все эукариоты – любопытная разновидность асгардархей»), обеспечивающего такую управляемость в условиях резко ограниченного числа возможных состояний гомеостаза, но, с другой стороны, позволяют в максимальной степени развиться многообразию внешних форм – разнообразию фенотипическому. Одновременно увеличение разделительной сложности у эукариот добавляет в информационный «бульон» больше «мяса» и «овощей»; появляются клетки истинной зародышевой линии, дающие, казалось бы, смысл существованию остальных клеток, обоснование их специализации и оправдание апоптозу. Кроме того, «бульонное» состояние информационной среды ухудшает качество передачи информации, как ввиду увеличенного уровня воспринимаемого системами информационного шума, так и в силу упрощенных механизмов верификации поступающей информации. В результате часть семантической информации агентами «додумываться» и энтропия (неопределенность информации) лавинообразно нарастает. «Додуманное» решение, однако, как в конкурсе КВН на «добивку шутки», иногда может оказаться и лучше оригинального.
Многоклеточность как апгрейд коммуникационных способностей