В состав маршевой ступени В‑825 вошли корпус из шести отсеков, а также четыре крыла с рулями. Первая ступень ракеты представляла собой твердотопливный ускоритель с четырьмя складывающимися стабилизаторами и расположенными на их концах рулями с рулевыми машинами. Корпус ракеты, кроме первого отсека, должен был изготавливаться из алюминиевого сплава, крылья и рули – из стали и титана, стабилизаторы – из дюралюминиевых и стальных деталей. Все агрегаты корпуса выполнялись сварными, и лишь стабилизаторы имели клепаную конструкцию.
В целом же создание В‑825 потребовало принятия огромного количества неординарных конструктивных и технологических решений, мобилизации творческих инженерных усилий и напряженной работы на производстве.
Параллельно с «основным» вариантом В‑825 Грушин предложил и экспериментальный, двигательные установки которого должны были представлять собой гибридные ракетные двигатели. Для их работы предполагалось использовать твердое горючее и жидкий окислитель. Разработку подобных двигательных установок выполнили под руководством П. Ф. Зубца и довели до стадии стендовых испытаний. Первое из них состоялось в июле 1968 года, но к тому времени все работы по В‑825 уже были подчинены требованиям скорейшего начала летных испытаний основного варианта.
Еще 5 ноября 1966 года было выпущено Постановление о начале строительства в Сары‑Шагане полигонного варианта системы, обозначенного «Азов». Тогда же изготовление опытных образцов ракет было поручено долгопрудненскому 464‑му заводу.
Ведущий конструктор 464‑го завода Александр Павлович Булашевич вспоминал:
«Чрезвычайно высокие требования, предъявленные к изготовлению ракеты, повлекли за собой необходимость серьезного технологического переоснащения завода. Для этой работы была проведена большая реконструкция, была увеличена мощность цеха пластмасс, введены в эксплуатацию автоклавы для формирования теплозащитных покрытий на элементах ракеты. В процессе ее изготовления было внедрено более 3 тысяч наименований оснастки и освоено большое количество новых технологических процессов. Так, была впервые применена электронно‑лучевая сварка литейного титанового сплава ВТ‑5Л в сочетании со сплавом ВТбС на установке ЭЛУ‑15. Это позволило получить сварные соединения толщиной до 5 мм с необходимыми требованиями. Была освоена технология ротационной вытяжки деталей баков на раскатном станке с последующей формовкой их на конус с помощью штамповки взрывом.
Для обеспечения защиты корпуса ракеты от аэродинамического нагрева были освоены и внедрены автоклавный метод нанесения объемной теплозащиты из стеклоткани на несущие поверхности, нанесение напылением теплозащитного покрытия на корпуса отдельных отсеков. Теплозащита конических отсеков с аппаратурой осуществлялась методом надвигания на них теплозащитных конусов. Сложнейшей задачей оказалось нанесение стеклотканевой толстостенной теплозащиты на крылья в автоклаве. При этом требовалось обеспечить высокую адгезию теплозащиты с поверхностью крыла, которая контролировалась приборным методом. Иногда из‑за нарушения адгезии приходилось сдирать всю теплозащиту. В то же время управлять этим процессом было достаточно сложно, и его отработка была вопросом времени, которого как всегда не хватало.