Уже на начальных этапах проектирования 5В55 стало ясно, что ее оптимальным вариантом станет вертикально стартующая одноступенчатая ракета с относительно коротким активным и последующим пассивным участками. Поиски, которые вели аэродинамики, оказались более продолжительными. На начальных этапах разработки для ракеты приняли нормальную аэродинамическую схему с крыльями малого удлинения (ребрами). В октябре 1968 года в ЦАГИ исследовалась ракета с восемью несущими ребрами, весной 1969 года – ракета схемы «утка» с несущими ребрами. Однако в дальнейшей работе выяснилось, что при характерных для 5В55 параметрах полета вклад крыльев в улучшение маневренности и повышение аэродинамического качества ракеты будет не столь значителен. В результате в окончательном виде для 5В55 выбрали схему «несущий корпус», с четырьмя цельноповоротными управляющими поверхностями в хвостовой части – аэродинамическими рулями‑элеронами. Подобная схема обладала малым сопротивлением и при малой продолжительности работы двигателя обеспечивала полет на заданную дальность с допустимой потерей скорости на пассивном участке траектории.
Несколько вариантов рассматривалось и при выборе системы наведения ракеты. В окончательном виде было реализовано органическое сочетание радиокомандного наведения на начальном и среднем участках траектории с так называемым «сопровождением через ракету» на конечном. Использование подобного метода наведения позволило организовать полет ракеты по оптимальным траекториям, с низким расходом энергии и обеспечило поражение целей с высокой эффективностью.
Для реализации этого метода наведения вместо сложной и дорогостоящей ГСН в передней части ЗУР под обтекателем был установлен радиолокационный визир, информация от которого передавалась на наземные средства системы. На основании этой информации, а также данных о ракете и цели, получаемых от радиолокатора системы, вырабатывались команды наведения.
Другим техническим решением, радикально упростившим задачи, стоящие при эксплуатации ракеты, стало применение транспортно‑пускового контейнера, обеспечившего защиту ракеты от воздействия неблагоприятных атмосферных факторов и механических повреждений от момента вывоза с серийного завода до пуска.
Ракету изначально предполагалось оснастить однорежимным твердотопливным двигателем с корпусом из высокопрочного алюминиевого сплава. Для изготовления корпуса этого двигателя был впервые применен метод обратного прессования. Технология процесса была разработана совместно с коллективом Всесоюзного института легких сплавов (ВИЛС) и реализована на Куйбышевском металлургическом комбинате.
Ее достоинством стало то, что она позволила изготавливать корпус двигателя за короткий промежуток времени из одной заготовки, с высочайшим коэффициентом использования материала, при минимальной последующей механической обработке. Кроме того, эта технология обеспечивала возможность заодно с корпусом сформировать и переднее днище.
Еще одним элементом новизны стал вертикальный старт ракеты. Известно, что вертикально стартовали со своих пусковых столов еще зенитные ракеты конца 1940‑х – начала 1950‑х годов. Однако причиной подобного выбора являлись тогда вовсе не преимущества вертикального старта, а невысокие энергетические возможности жидкостных двигательных установок этих ракет. Естественно, что с появлением твердотопливных ускорителей, позволявших быстро разгонять ракеты до сверхзвуковых скоростей, «мода» на вертикальный старт прошла. С середины 1950‑х годов все вновь создававшиеся зенитные ракеты стартовали с наклонных направляющих пусковых установок, которые отслеживали перемещение воздушной цели.