Откройте прекрасную книгу Р. Куранта и Г. Роббинса «Что такое математика». Там сказано: дифференциалы как бесконечно малые величины из математического обихода изгнаны окончательно и не без позора. И всё же сам термин «дифференциал» прокрался обратно через чёрный ход. Он как ни в чём не бывало по-прежнему фигурирует в обозначениях, сохранившихся до сего времени и сбивающих с толку: dS/dt. Правда, сегодня в математики видят не бесконечно малую величину, а конечное приращение «дельта тэ». Что же касается dS/dt, то эта «дробь» в целом стала просто символом результата, который получается при переходе к пределу. Действительно, прежде чем переходить к пределу, можно избавиться от будущего «нуля» в знаменателе. Для этого числитель дроби ΔS/Δt раскрывают; ведь за этим символом стоит обычная алгебраическая разность. Разность между двумя выражениями одного и того же математического закона, но для двух разных точек кривой. В формуле разности появляется сомножитель «дельта тэ». Тот же самый, что стоит в знаменателе! А раз так, то и числитель и знаменатель можно сократить на «дельта тэ». Ведь это не возбраняется до тех пор, пока «дельта тэ» не равно нулю. Так «дельта тэ» исчезает из знаменателя. Правда, в формуле для числителя после сокращения остаётся ещё одно «дельта тэ». Но потом, когда мы переходим к пределу, это второе «дельта тэ» обращается в нуль. Так — сложно ли, просто ли — но для каждой функции удаётся ловким манёвром миновать нелепость:
ΔS/Δt = 0/0.
Конечно, Ньютон и Лейбниц тоже умели находить интегралы и производные такими способами. Но они не признавали за предельной процедурой исключительного права служить опорой новых методов. Они рассуждали примерно так: да, интеграл и производную можно вычислить как пределы. Но чем же, чёрт побери, являются эти понятия сами по себе?
Вот, к примеру, наклон кривой. Он существует сам по себе, независимо от хитроумного геометрического построения, сопровождавшегося предельным переходом. То же самое можно сказать и об интеграле, который истолковывается как площадь плоской фигуры, ограниченной осями координат и нашей кривой.: мол, такое понятие, как площадь, имеет некий абсолютный «смысл в себе», и вроде бы нет надобности привлекать вспомогательные операции с пределами.
Иначе рассуждают современные математики.
«Ни Ньютон, ни Лейбниц, — говорится в книге Р. Куранта и Г. Роббинса, — не смогли занять ту отчётливую позицию, которая нам кажется простой и естественной теперь, когда понятие предела полностью выяснено. Их пример господствовал больше столетия, в течение которого сущность дела была затемнена бесплодными рассуждениями о «бесконечно малых величинах», о «дифференциалах» и т. д.
Считалось, что такие понятия доступны лишь немногим избранным, обладающим настоящим математическим чутьём, и что анализ поэтому, по существу, очень труден, так как не всякий обладает этим чутьём или может его развить. Интеграл, аналогичным образом, рассматривался как сумма «бесконечно большого числа бесконечно малых слагаемых». Существовало представление, будто такая сумма есть интеграл, или площадь, в то время как вычисление её значения как предела последовательности конечных сумм обыкновенных слагаемых рассматривалось как некий придаток… Теперь мы попросту отбрасываем желание «непосредственно» объяснить интеграл и определяем его как предел последовательности конечных сумм. Этим путём все трудности и устраняются, и всё, что ценно в анализе, приобретает твёрдую основу»..
Твёрдую основу? Но прежде чем ответить, давайте подведём итог: ни Ньютон, ни Лейбниц не парировали выпадов Зенона. Они просто отмахнулись от них. Не поступи они именно так, быть может, ещё больше отсрочилось бы открытие дифференциального и интегрального исчисления, этого мощнейшего инструмента расчётов в современной науке и технике. Так или иначе, сколь бы ни были велики заслуги творцов математического анализа, противоречия, подмеченные Зеноном, остались неразрешёнными. Ньютон и Лейбниц считали точки наименьшими из существующих, но всё же протяжёнными «тельцами». Разлагая кривую на бесконечно большое количество бесконечно малых частей, они приходили к пределу, который считали отношением высоты к ширине геометрического «атома» — точки.
Сегодня атомистические представления отвергнуты математикой. И хотя приведённое геометрическое истолкование широко практикуется в преподавании, уже почти никто не объясняет ΔS/Δt по Лейбницу — как отношение бесконечно умаляющихся «дельта эс» и «дельта тэ». Ибо можно обойтись вообще без геометрических построений. Можно просто исключить «дельта тэ» из знаменателя путём чисто формальной процедуры.
«Чисто формальной» — значит не прибегающей к интуитивным представлениям. В нашем случае к зримым моделям — чертежам.