Итак, мы почти закончили. Нам известна скорость света c
; предположим, что нам известна и скорость поезда v. Тогда мы можем воспользоваться полученным уравнением, чтобы вычислить значение T. Грубый способ сделать это – угадать его и посмотреть, насколько оно подходит. Но, скорее всего, вам это вряд ли удастся, и придется делать новые попытки. Возможно, вам повезет и вы все же в какой-то момент добьетесь своего. Но, к счастью, есть более простой и надежный способ – уравнение можно «решить», выполнив простые математические преобразования и получив T² = 1/(c² − v²). Это означает следующее: «сперва вычислите c² − v², а затем разделите единицу на полученное значение». Здесь косая черта означает операцию деления, то есть ½ = 0,5 и т. д. Если вы хотя бы немного знаете математику, вам сейчас невероятно скучно. Если нет, то вы можете захотеть узнать, как мы вывели формулу T² = 1/(c² − v²). Поскольку это книга не о математике, просто поверьте нам. Если хотите – подставьте несколько чисел и убедитесь, что мы правы. Фактически мы вычислили не само время T, а T², что означает T, умноженное на T. Получить значение T можно путем извлечения квадратного корня.Математически квадратный корень – это число, которое, будучи умножено само на себя, дает нам исходное число. Например, квадратный корень из девяти равен трем, а из семи – примерно 2,646. На калькуляторах есть специальная кнопка для вычисления этого значения. Она обычно помечена символом √, а математическая запись имеет такой вид: 3 = √9. Как видите, извлечение квадратного корня – это операция, обратная возведению в квадрат: 4² = 16 и √16 = 4.
Но вернемся к нашей задаче. Теперь мы можем записать время одного такта световых часов с точки зрения наблюдателя на платформе – оно равно времени, необходимому для движения светового луча от нижнего зеркала к верхнему и назад, то есть 2T
. Взяв квадратный корень из T² и умножив его на два, получим 2T = 2 ÷ √(c² − v²). Это уравнение позволяет вычислить время одного такта, которое измерил наблюдатель на платформе, зная скорость света и скорость поезда, а также расстояние между зеркалами (1 метр). Но время одного такта для наблюдателя в поезде рядом с часами равно просто 2/с, так как для него свет проходит два метра со скоростью c (расстояние = скорость × время, поэтому время = расстояние/скорость). Вычислив отношение этих двух промежутков времени, мы определим, насколько медленнее отсчитывают время часы в поезде с точки зрения наблюдателя на платформе. Они идут медленнее в c ÷ √(c² − v²) раз, что можно записать после небольшого математического преобразования как 1 ÷ √(1 − v² ÷ c²). Это очень важная величина в теории относительности, обычно обозначаемая греческой буквой γ (произносится «гамма»). Обратите внимание, что γ всегда больше 1, если часы движутся со скоростью, которая меньше скорости света c, поскольку v/c меньше 1. При скоростях, гораздо меньших скорости света (то есть для большинства обычных скоростей, так как скорость света, будучи записана в привычных единицах, составляет чуть больше миллиарда километров в час), значение γ очень близко к 1. И только когда скорость движения составляет существенную долю скорости света, γ начинает заметно отличаться от 1.На этом пока завершим математические упражнения – нам удалось выяснить, как именно замедляется время на движущемся поезде по отношению ко времени на платформе. Давайте назовем некоторые цифры, для того чтобы прочувствовать происходящее. Если поезд движется со скоростью 300 километров в час, то, как можно убедиться самостоятельно, значение v
²/c² представляет собой крохотное число и составляет около 0,000000000000077. При этом коэффициент замедления времени γ равен 1 ÷ √(1 − 0,000000000000077 ≈ 1,0000000000039). Как и ожидалось, эффект весьма незначительный – безостановочное путешествие на протяжении 100 лет на таком поезде удлинит вашу жизнь на 0,0000000000039 года с точки зрения вашего приятеля на платформе, что составляет около одной десятой миллисекунды. Эффект перестанет быть незначительным, когда скорость достигнет 90 % от скорости света. При этом коэффициент замедления времени γ будет больше двух, то есть часы в таком поезде станут тикать вдвое медленнее часов на платформе. В этом и состоит прогноз Эйнштейна, и, будучи добросовестными учеными, мы должны его проверить экспериментальным путем. А пока все это кажется нам несколько невероятным.