Биохимическую асимметрию можно обнаружить не только в аминокислотах. Углеводы, входящие в состав нашего тела, например глюкоза, также присутствуют лишь в одной форме, но на этот раз в виде D-изомера. И этот ошеломляющий факт также требует глубокого объяснения[181]
.Итак, наши тела состоят только из L-аминокислот и D-углеводов. Но каков был бы организм, выстроенный из D-аминокислот и L-углеводов? Функционировал бы он так же хорошо, как обычный «L-организм»? Хотя маловероятно, что мы сможем ответить на этот вопрос в обозримом будущем, сейчас уже возможно синтезировать пептиды, полипептиды и даже белки, состоящие только из D-аминокислот. Если белок является ферментом, тогда трехмерная структура D-фермента представляет собой зеркальный вариант нормального L-фермента и поэтому должна взаимодействовать с D-аминокислотами, а не с L-аминокислотами – так же, как зазеркальный замок можно открыть зазеркальным ключом. В одном случае это было проверено на ферменте протеазы из вируса иммунодефицита человека (ВИЧ), и фермент работал точно так, как предсказывалось. Фермент был выстроен как бы задом наперед, и оказалось, что зазеркальная D-протеаза так же хорошо разделяет D-пептиды на мелкие кусочки, как обычная L-протеаза разделывается с L-пептидами. Похоже, есть все основания полагать, что подобное верно и по отношению к полностью зазеркальному организму – пока он живет в зазеркальном мире, где может пить зазеркальное молоко и тому подобное[182]
.Хотя наши тела почти полностью строятся из L-аминокислот, D-аминокислоты встречаются в природе, и их присутствие часто проясняет многие биологические процессы. Фактически D-аминокислоты присутствуют постоянно из-за спонтанной рацемизации. Когда Пастер в течение шести часов нагревал кристаллы D-винной кислоты до температуры 170 °C, он обнаружил, что они превращаются в рацемат, смесь, в равной пропорции состоящую из D- и L-изомеров винной кислоты. Природные L-аминокислоты также рацемизируются, превращаясь в смесь D- и L-изомеров, процесс этот легче всего осуществляется в аминокислотах, находящихся в свободном состоянии, но подвержены ему и аминокислоты, находящиеся в составе белков, например в ходе приготовления пищи. Для белков рацемизация может стать разрушительной, потому что D-аминокислоты обладают иной трехмерной конфигурацией, отличной от L-аминокислот, что изменяет форму белка и не позволяет ему правильно связываться с другими белками. Клеткам обычно удается избежать «белковой усталости» – явления, отчасти сходного с усталостью металла, – посредством постоянной замены старых изношенных белков свежими, синтезируемыми рибосомами и содержащими только чистые L-аминокислоты. Иногда, однако, процесс постоянной замены нарушается. Некоторые белки нашего тела – дентин в зубах или кристаллин в хрусталиках глаз – живут очень долго, потому что образуют физическую структуру органа, и с возрастом в них неизбежно накапливаются D-аминокислоты.
С другой проблемой сталкиваются короткоживущие красные клетки крови – эритроциты. Эти переносящие кислород клетки чрезвычайно активны и не успевают заменять старые белки новыми, поскольку не содержат главных механизмов производства белков – ядра и рибосом. Все белки, которые содержит клетка, присутствуют в ней с момента ее образования и до конца ее естественного существования. Белковая усталость проявляется в постепенно накапливающихся ошибках, и нет никакого способа заменить неисправные старые белки. Это сценарий ветшающей космической станции, экипаж которой вынужден обходиться лишь тем, что есть на борту, поскольку никакие изношенные части заменить нельзя – до тех пор, пока весь корабль окончательно не выйдет из строя из-за накопления поломок. Хотя эритроциты живут недолго – у людей не более 120 дней, – для изучения белковой усталости они представляют собой идеальную систему. В течение сорока дней около одного процента содержащихся в них L-аспарагиновой кислоты превращается в D-аспарагиновую кислоту – удивительно быстрая деградация. К счастью, большинство аминокислот рацемизируются не так быстро, особенно те, что составляют белки. Для большинства аминокислот процесс рацемизации длится существенно дольше и может служить своего рода «биологическими часами» для определения возраста биологических объектов. Долговременная рацемизация белков отмечена у «ледяного человека» Этци, чье тело обнаружили в сентябре 1991 года в леднике в Тирольских Альпах. По данным радиоуглеродного анализа, он жил около 5000 лет назад, между 3350 и 3100 годами до н. э. В его волосах 37 процентов аминокислоты гидроксипролин оказалось в виде D-изомера, тогда как доля этого изомера в образцах волос возрастом 3000 лет оставляла 31 %, 19 % – в волосах тысячелетней давности и всего 4 % в образцах, собранных недавно[183]
.