Читаем Пока алгебра не разлучит нас полностью

ЛЕВИ-СТРОСС: Впечатляюще, господин Вейль! Однако мне не дает покоя один вопрос. Сначала мы сказали, что восприятие мелодии не изменится, если мы умножим частоты всех нот на некий общий множитель, а теперь мы прибавляем к нотам полутона. Быть может, эти две операции совпадают?

ВЕЙЛЬ: Прекрасный вопрос. Действительно, в начале разговора мы указали, что отношение частот двух последовательных нот неизменно. Именно благодаря этому мы смогли записать таблицу частот начиная с ноты ля. Обратите внимание, что разность двух последовательных частот вовсе не постоянна. Разница частот нот до и до-диез равна 277,18 — 261,63 = 13,55 Гц, а разница между частотами нот ля-диез и си равна 493,88 — 466,16 = 27,72 Гц — почти в два раза больше! Чтобы преобразовать произведения в суммы, а отношения — в разности, нужно использовать логарифмы. По всей видимости, первым важность логарифмов в музыкальных расчетах понял Исаак Ньютон. Позвольте мне вкратце напомнить вам, что такое логарифм — возможно, в последний раз вам объясняли это почти сто лет назад.

Для двух положительных чисел а и b логарифмом а по основанию b (обозначается logb(a)) называется степень, в которую нужно возвести b, чтобы получить а.

Иными словами, с — логарифм а по основанию b, если числа а, b и с удовлетворяют соотношению bc = а. К примеру, известно, что log2(4) = 2, log2(8) = 3, так как 22 = 4, а 23 = 8. Вычислить логарифмы не всегда так легко. Нужно понимать, что логарифм преобразует частное в разность:


logb(x/y) = logb(x) - logb(y)


Продолжим рассматривать наш пример. Если основание логарифма равно b = 2, х = 8 и у = 4, то их частное равнялось бы 2, следовательно, левая часть выражения была бы равна log2(2) = 1. С другой стороны, мы уже знаем, что log2(8) = 3, log2(4) = 2.

В этом случае формула вновь оказывается верной, так как 1 = 3 — 2. Эту формулу можно доказать в общем виде, применив основные свойства степеней. Попробуйте сами!

Мы знаем, что отношения частот последовательных нот совпадают, следовательно, логарифмы этих отношений также будут равны:

117

logb(f2/f1) = logb(f3/f4) = ... = logb(f13/f12)


С учетом приведенной выше формулы получим

logb(f2) - logb(f1) = logb(f3) - logb(f2) = ... = logb(f13) - logb(f12)

Это соотношение выполняется для любого положительного b. Выберем особое значение d, равное корню 12-й степени из 2, которое удовлетворяет уравнению d12 = 2

Совсем недавно я объяснил, что любое отношение частот последовательных нот равно d, поэтому если мы рассмотрим логарифмы по основанию d, то получим:

logd(f2/f1) = logd(f3/f4) = ... = logd(f13/f12) = logd(d) = 1

так как показатель степени, в которую нужно возвести d, чтобы получить d, равен единице. Таким образом, мы можем преобразовать логарифм частного в разность логарифмов и получить следующее равенство:

logd(f2) - logd(f1) = logd(f3) - logd(f2) = ... = logd(f13) - logd(f12) = 1

ЛЕВИ-СТРОСС: Что это означает? Я запутался!

ВЕЙЛЬ: Ах да, я и забыл, что это вы попросили у меня объяснений... Эти вычисления иллюстрируют следующую мысль: если мы рассмотрим не частоты f1, f2 ..., а их логарифмы по основанию d, то есть logd(f1), logd(f2), то для перехода от любой ноты к следующей достаточно будет прибавить единицу. А это полутон!

ЛЕВИ-СТРОСС: Мы до сих пор не обратили внимания на один очень важный момент. Взглянув на додекафонический круг, читатель может представить, что все ноты используются одинаково, но очевидно, что основную роль играет подмножество нот до, ре, ми, фа, соль, ля и си, которым соответствуют белые клавиши.

Обратите внимание, что эта последовательность составлена очень странным образом: чтобы перейти от до к ре и от ре к ми, нужно добавить тон, а чтобы перейти от ми к фа — только полутон, при этом ни на клавиатуре пианино, ни на круге это никак не обозначено. Далее мы последовательно добавляем тон, чтобы перейти от фа к соль, от соль к ля и от ля к си, но интервал между си и до вновь нарушит симметрию:

118

до →1→ ре →1→ ми →1/2→ фа →1→ соль →1→ ля →1→ си →1/2→ до.

Это тональность до мажор. Мы можем построить новые эквивалентные тональности, начиная с любой ноты — для этого нужно воспроизвести последовательность интервалов 1, 1, 1/2, 1, 1, 1, 1/2. В общем случае потребуется вносить альтерации.

Вспомните «Струнный квартет № 3» Шостаковича: рядом с названием указано «фа мажор».

Это в некотором роде означает, что доминантная нота в партитуре — не до, а фа, следовательно, будет уместно перестроить строй, начав с фа. Мы хотим, чтобы закономерность 1, 1, 1/2, 1, 1, 1, 1/2 сохранялась: фа и соль, соль и ля разделены одним тоном, но ля и си отстоят друг от друга не на полутон, как нам бы хотелось, а на целый тон, поэтому вместо си нужно рассмотреть ноту на полтона ниже, то есть си-бемоль. Продолжим: си и до, до и ре, ре и ми разделены целыми тонами, и наконец, интервал между ми и фа равен одному полутону, как мы и хотели.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги