Читаем Пока алгебра не разлучит нас полностью

Теперь нетрудно показать, что порядок (х) = pfmn делится на порядок (у) = рe, так как мы предположили, что е < f. Мы доказали следующую лемму[2]:

Лемма 2. Пусть G — конечная абелева группа, порожденная двумя элементами.

Можно выбрать ее порождающие элементы так, что порядок одного будет делителем порядка другого.

Продолжим доказательство.

Порядок группы

Согласно предыдущей лемме мы можем выбрать порождающие элементы х и у группы G так, что порядок (у) = l и порядок (х) будет кратным l и равным, к примеру, lk. Все элементы G можно будет записать в виде 0 ≤ i < lk у 0 ≤ у< l, где 0 < i < lk и 0 < j< l.

Если бы две степени порождающих элементов совпадали, эта запись была бы не единственной. К примеру, если бы у3 равнялось х2, то х2у4 и х4у были бы двумя разными способами записи одного и того же элемента. Обозначим через t наименьшее целое положительное число такое, что уt совпадает с xs для некоторого целого s. Мы знаем, что t < I, так как уl = е = хlk.

132

В этой новой нотации каждый элемент G можно записать единственным образом в виде xiyj, где 0 < i < lk и 0 < j < t. В самом деле, если бы равенство xiyj = xiyj выполнялось для какого-либо 0< j' ≤ j < t, то мы получили бы хi'-i = уj-j', или, что аналогично, уj-j' было бы степенью х. Так как j’ — j строго меньше t, эта величина может равняться только нулю, следовательно, j = j' и i' = i, так как хi'-i = е при —lk < i' —i < lk.

Это доказывает, что порядок G равен произведению двух верхних границ показателей степени i и j, то есть lkt.

Целое число v

Обозначим через r порядок элемента уt. Так, е = (уt)r = уtr. Так как у — элемент порядка l, мы знаем, что l ≤ tr. Мы хотим доказать, что l = tr, следовательно, надо исключить случай l < tr. Будем рассуждать следующим образом: если t < tr, то существует целое число u < r такое, что l заключено между tu и t(u + 1), то есть выполняется равенство tu < l < t(u + 1). Обратим внимание на величину t(u + 1) — l.

С одной стороны, это целое положительное число, меньшее t, так как 0 < t(u + 1) — l < t(u + 1) — tu = у.

С другой стороны, имеем равенства yl(u+1)-l = yt(u+1)(u + i )= xs(u+1), так как у имеет порядок l, и уt = xs.

Таким образом, мы доказали, что существует целое положительное число, меньшее t, такое, что у, возведенное в эту степень, равно некоторой степени х. Этот вывод абсурден, так как, по определению, t — наименьшее целое число, обладающее этим свойством. Таким образом, мы исключили случай l < tr. Имеем l = tr. Так, е = уt = ylr = xsr.

В дальнейших рассуждениях применим следующую лемму.

Лемма 3. Пусть g — элемент порядка n группы G. Тогда n будет делителем любого целого числа d такого, что gd = е.

Достаточно доказать эту лемму для положительных d. Так как n — наименьший целый показатель степени, для которого g, возведенный в эту степень, совпадает с нейтральным элементом, мы знаем, что n < d. Следовательно, мы можем разделить duann получить d = рп + r, где 0 < r < n — остаток от деления.

Тогда е = gd = gpn + r = (gn)p gr = gr, так как gn = e. Таким образом, gr = e, и это означает, что r = 0 — в противном случае порядок g будет равняться не n, а r. Лемма доказана.

Так как xsr = е, то, по лемме 3, sr нацело делится на порядок (х) = Ik, то есть существует v такое, что sr = Ikv. Подставив в это выражение значение f, которое

133

мы только что вычислили, получим sr = trkv. Так как r — порядок элемента уt, это ненулевое целое число. Разделив на него обе части равенства, получим s = tkv.

Заключительная часть доказательства

В этом, последнем, разделе мы докажем, что группа G изоморфна прямому произведению циклических групп, порожденных х и x-vky, где v — целое число, определенное в предыдущем разделе. Имеем элементы порядка lk и t соответственно.

В первом случае доказательство не требуется. Во втором случае заметим, что

(x-vky)t = x-vkt yt = x-vkt xs = xs-vkt = e,

так как yt = xs и s = vkt. Если бы существовало другое целое число t' < t, для которого (х-vky)t' = е, то мы получили бы равенство у1 =x~vkt. Однако это выражение противоречит определению f как наименьшего целого числа, для которого у1 — степень х. Следовательно, x~vky имеет порядок f, а порядок прямого произведения <х>

равен Ikt.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги