Читаем Популярно о конечной математике и ее интересных применениях в квантовой теории полностью

Из этого отзыва сразу ясно, что менталитет рецензента такой же как у Полякова, Воловика, моих рецензентов в Physical Review D и др.: только QFT – великая наука, а все остальное разрешается только как дополнение к QFT. Поэтому, когда он видит, что применяются конечные поля, то, по его представлениям, это имеет смысл только для того, чтобы устранить бесконечности в QFT. Как я писал в разд. 9.5, казалось бы, правила игры в QFT странные: вначале используют некорректную математику в которой возникают бесконечности, а потом нужны героические усилия, чтобы их устранить. Но адепты QFT ничего странного в этом не видят и думают, что так и должно быть. В данном случае он думает, что раз Kostelecky и string theory этим занимались, то конечные поля не нужны. И он даже не пытался понять что сделано в статье, да и, скорее всего, был не в состоянии понять т.к. с его менталитетом конечные поля не нужны.

Когда такие рецензии пишутся для физических журналов, то это еще как-то понять можно. Но эта рецензия написана для журнала, цель которого – продвигать конечные поля в разные области, а он пишет, что они не нужны. Т.е., рецензент не понимает насколько его рецензия смехотворна. Но и журнал тоже спокойно принимает рецензию, которая полностью противоречит его editorial policy и на основании этой рецензии отвергает мою работу. Как обычно, я написал appeal. Он довольно длинный и приводить его не буду, но в нем написал, что ”I believe it is paradoxical that a reviewer who does not know finite fields writes a report for FFA and recommends rejection because he does not like an approach based on finite fields. Probably he does not understand how ridiculous this situation is.” И, как обычно, мой appeal не был принят во внимание.

Итак, выяснилось, что математики тоже не хотят брать мои статьи. Их менталитет такой, что раз они физику не знают, то мои статьи можно взять только если физики одобрят, ну а физики не одобряют. Так что получается замкнутый круг.

Но у меня возникли такие мысли. Т.к. я все время был среди физиков, то мой менталитет был такой, что конечную математику надо рассматривать с точки зрения применения к физике. Но если фундаментальную квантовую физику можно построить, исходя из конечной математики, а результаты классической математики получаются как частный случай конечной математики в формальном пределе p→∞, то получается, что сама по себе классическая непрерывная математика не является фундаментальной наукой. Эта математика возникла на рубеже 17-го и 18-го веков и до сих пор считается, что она фундаментальная. Как я отмечал в разд. 9.5, понятие бесконечно малых противоречит современным квантовым представлениям, но все равно, наверное, в силу исторических причин, даже квантовая теория основана на непрерывной математике. Конечно, в классической математике сделано очень много, многие разделы науки и приложения на ней обоснованы, так что трудно себе представить, что может быть иначе. Можно, конечно, задать вопрос как бы все сложилось, если бы, например, Галуа родился раньше Ньютона и Лейбница, но история не знает сослагательного наклонения. К тому же многие великие умы (Kantor, Russel, Zermelo, Fraenkel, Hilbert и многие другие) пытались обосновать классическую математику. Гильберт говорил, что никто не выгонит нас из рая, который создал для нас Кантор. Несмотря на теоремы Гёделя и другие результаты, многие математики остаются в этом раю. Такое впечатление, что, из каких-то соображений, им просто удобней там оставаться.

Исходя из сказанного, я стал писать в своих работах, что конечная математика фундаментальна не только потому, что фундаментальная квантовая физика должна быть на ней основана, но и потому, что классическая непрерывная математика – ее частный случай. Мне казалось, что математикам это должно быть интересно. Но математические журналы меня сразу отфутболивали под предлогом, что это только философия, а иногда и вообще без предлогов. Например, Forum of Mathematics просто написал: “Unfortunately, we cannot accept it for publication.” без всяких объяснений. Журнал Israel Journal of Mathematics написал: “Unfortunately your paper is out of the scope of the Israel Journal of Mathematics. Therefore we cannot consider it for publication.”

Хоть какой-то осмысленный ответ был из Finite Fields and Their Applications:

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии