Читаем Порядок из хаоса полностью

Понятие креода является составной частью качественного описания эмбрионального развития, предложенного Уоддингтоном более двадцати лет назад. Эволюция по Уоддингтону носит поистине бифуркационный характер: прогрессивное зондирование, в ходе которого эмбрион вырастает в «эпигенетический ландшафт», где стабильные участки сосуществуют с участками, допускающими выбор одного из нескольких путей развития. См.: Waddington С, H. The Strategy of Genes.—I..: Allen & Unwin, 1957. Креоды Уоддингтона занимают центральное место в биологическом мышлении Рене Тома. Таким образом, креоды могли бы стать своего рода точкой пересечения двух подходов: подхода, излагаемого нами (суть его состоит в том, чтобы, исходя из локальных механизмов, исследовать весь спектр порождаемых ими режимов коллективного поведения), и подхода Тома (исходящего из глобальных математических понятий и связывающего вытекающие из них качественно различные формы и преобразования с феноменологическим описанием морфогенеза).

159


Kaufmann S. A., Shymko R. M„ Trabert К. Control of Sequential Compartment Formation in Drosophila. Science, 1978, vol. 199, p. 259—269.

160


Bergson H. Creative Evolution.—L.: Macmillan, 1911, p. 94—95,

161


Waddington C. H. The Evolution of the Evolutionist. - Edinburgh: Edinburgh University Press, 1975; Weiss P. The Living System: Determinism Stratified.—In: Beyond Reductionism. /Ed. A. Koestler and J. R. Smythies.—L.: Hutchinson, 1969.

162


Koshiand D. E. A Model Regulatory System: Bacterial Chemotaxis. Physiological Review, 1979, vol. 59, 4, p. 811—862.

163


Nicolis G., Prigogine I. Self-Organization in Nonequilibrium Systems. — N. Y.: John Wiley & Sons, 1977. [Русский перевод: Николис Г., Пригожин И. Самоорганизация в неравновесных системах. От диссипативных структур к упорядочению через флуктуации.—М.: Мир, 1979.]

164


Baras F., Nicolis G., Malek Mansour М. Stochastic Theory of Adiabatic Explosion Journal of Statistical Physics, 1983, vol. 32, 1, p. 1.

165


См., например: Malek Mansour М., van den Broeck, Nicolis G., Turner J. W., Annals of Physics. 1981, vol. 131, 2, p. 283.

166


Deneubourg J. L, Application de l'ordre par fluctuation a la description de certaines etapes de la construction du nid chez les termites. Insects Sociaux, Journal International pour 1'etude des Anthropodes sociaux, 1977, t. 24, 2, p. 117—130. Первоначальная модель была затем обобщена и расширена в соответствии с новыми экспериментальными исследованиями, см.: Bruinsma О. H. An Analysis of Building Behaviour of the Termite rnacrotermes subhyalinus. Proceedings of the VIII Congress IUSSI — Waegeningen, 1977.

167


Garay R. P., Lefever R. A Kinetic Approach to the Immunology of Cancer: Stationary States Properties of Effector—Target Cell Reactions. Journal of Theoretical Biology, 1978, vol. 73, p. 417— 438 и частное сообщение.

168


Allen Р. М. Darwinian Evolution and a Predator — Prey Ecology. Bulletin of Mathematical Biology. 1975, vol. 37, о. 389—405; Evolution, Population and Stability. Proceedings of the National Academy of Sciences, 1976, vol. 73, 3, p. 665—668. См. также: Czaplewski R. A Methodology for Evaluation of Parent—Mutant Competition. Journal for Theoretical Biology, 1973, vol. 40, p. 429—439.

169


Современное состояние теории изложено в книге: Eigen М., Schuster P. The Hypercycle. — Berlin: Springer, 1979. [Русский перевод: Эйген М., Шустер П. Гиперцикл. Принципы самоорганизации макромолекул.—М.: Мир, 1982.]

170


May R.,Science, 1974, vol 186, p. 645-647; см. также Мау R. Simple Mathematical Models with very Complicated Dynamics. Nature, 1976, vol. 261, p. 459-467

171


Hassell М. P. The Dynamics in Anthropod Predator—Prey Systems.—Princeton, N. J.: Princeton University Press, 1978.

172


Heinrich B.Artful Diners, Natural history, 1980, vol. 89, 6, p 42—51 (особенно с. -12).

173


Love М The Alien Strategy. Natural history, 1980, vol. 89, 5, p. 30—32.

174


Denenbaurg J. L., Allen P. N. Modeles theoriques de la division da travail des les ............................... Academie Rosale de Belgique, Bulletin de la Classe des Sciences, 1976, t. LXII, pp. 416—429; Allen P. М. Evolution in an Ecosystem with Limited Resources, ibid., p. 408—415.

175


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука