Читаем Порядок из хаоса полностью

Lewis G. N. The Symmetry of Time in Physics. Science, 1930, vol. 71, p. 570.

197


Eddington A. S. The Nature of the Physical World. — N. Y.: Macmillan, 1948, p. 74.

198


Gardner M. The Ambidextrous Universe: Mirror Asymmetry and Time-Reversed Worlds.—N. Y.: Charles Scribner's Sons, 1979, p. 243. [Русский перевод: Гарднер M. Этот правый, левый мир. — M.: Мир, 1967. Серия «В мире науки и техники».]

199


Planck M. Treatise on Thermodynamics.—N. Y.: Dover Publications, 1945, p. 106. [Русский перевод: Планк M. Лекции по термодинамике Макса Планка.—СПб., 1900, с. 91—92,]

200


Высказывание Берна приведено в работе: Denbigh К. How Subjective Is Entropy? Chemistry in Britain. 1981, vol. 17, p. 168— 185.

201


См., например: Кас M. Probability and Related Topics in Physical Sciences. — L.: Interscience Publishers, 1959. [Русский перевод: К а ц M. Вероятность и смежные вопросы в физике. — M.: Мир, 1965.]

202


Gibbs J. W. Elementary Principles in Statistical Mechanics. — N. T: Dover Publications, 1960, Ch. XII. [Русский перевод: Гиббс Д ж. В. Основные принципы статистической механики, разработанные со специальным применением к рациональному обоснованию термодинамики. Гл. XII. О движении систем и ансамблей систем в течение больших промежутков времени.—В кн.: Гиббс Дж. В. Термодинамика. Статистическая механика.—M.: Наука, 1982, с. 463. Серия «Классики естествознания».]

203


Например, С. Ватанабе проводит резкое различие между миром созерцаемым и миром, в котором мы действуем как активные агенты. По утверждению Ватанабе, непротиворечивое объяснение возрастания энтропии невозможно вне связи с воздействиями, производимыми нами на мир. Но в действительности вся наша физика может рассматриваться как наука о мире, на который мы воздействуем, поэтому проводимая Ватанабе демаркационная линия между миром созерцаемым и миром как ареной активных действий неспособна прояснить взаимосвязь между микроскопической детерминистической симметрией и макроскопической вероятностной асимметрией. Вопрос по-прежнему остается без ответа. Каким образом мы можем, например, придать смысл утверждению о том, что солнце необратимо сгорает? См.: Watanabe S. Time and Probabilistic View of the World.—In.: The Voices of Time. /Ed. J. Fraser.—N. Y.: Braziller, 1966.

204


Демон Максвелла впервые появился в работе: Maxwell J. С. Theory of Heat.—L.: Longmans, 1971, Ch. XXII. См. также; Daub E. Maxwell's Demon; Heimann P. Molecular Forces. Statistical Representation and Maxwell's Demon. — In.: Studies in History and Philosophy of Science, 1970, vol. 1. Этот том целиком посвящен Максвеллу.

205


Boltzmann L. Populare Schriften.—Braunschweig—Wiesbaden: Vieweg, 1979. [Русский перевод: Больцман Л. Статьи и речи.—M.: Наука, 1970, с. 6.] Как подчеркивал Элькана (Elkana Y. Boltzmann's Scientific Research Program and Its Alternatives.—In.: Interaction Between Science and Philosophy.—Atlantic, Highlands, N. J.: Humanities Press, 1974), дарвиновская идея эволюции особенно отчетливо выражена во взглядах Больцмана на научное знание, т. о. в отстаивании Больцманом механистических моделей, подвергнутых энергетистами резкой критике. См., например, лекцию «Второй закон механической теории тепла», с которой Больцман выступил в 1886 г. (Boltzmann L. The Second Law of Thermodynamics.—In.: Theoretical Physics and Philosophical Problems. /Ed. B. McGuinness.—Dordrecht: D. Reidel, 1974. [Русский перевод: Больцман Л. Второй закон механической теории тепла.—В кн.: Больцман Л. Статьи и речи.—M.: Наука, 1970, с. 3—28.])

206


Более подробно больцмановская интерпретация энтропии рассмотрена в кн.: Prigogine I. From Being to Becoming—Time and Complexity in the Physical Sciences. — San Francisco: W. H. Freeman & Company, 1980. [Русский перевод: Пригожин И. От существующего к возникающему.—М.: Наука, 1985.]

207


В своей «Научной автобиографии» Планк рассказывает о том, как изменялись его отношения с Больцманом, который сначала отрицательно отнесся к введенному Планком феноменологическому различию между обратимыми и необратимыми процессами. По этому вопросу см. Elkana Y. Boltzmann's Scientific Research Program and Its Alternatives.—In.: Interaction Between Science and Philosophy. — Atlantic, Highlands, N. J.: Humanities Press, 1974; Brush S. The Kind of Motion We Call Heat. Book II. Statistical Physics and Irreversible Processes.—Amsterdam: North Holland Publishing Company, 1976, p. 640—651; относительно взглядов А. Эйнштейна см. ibid., р. 672—674; Schrodinger E. Science, Theory and Man.— N. Y.: Dover Publications, 1957.

208


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука