Читаем Порядок из хаоса полностью

Poincare H. La mecanique et 1'experience. Revue de Meta-physique et de Morale, 1893, vol. 1, p. 534—537; Poincare H. Lecons de Thermodynamique (1892). Ed. J. Blondin.—Paris: Hermann, 1923-

209


Относительно споров вокруг больцмановской энтропии см. Brush S. The Kind of Motion We Call Heat. Books I, II.—Amsterdam: North Holland Publishing Company, 1976 и замечания Планка в его «Научной автобиографии» (Лошмидт был учеником Планка).

210


Prigogine I., George С., Henin F., Rosenfeld L. Unified Formulation of Dynamics and Thermodynamics. Chemica Scripta, 1973, vol. 4, p. 5—32 .

211


Park D. The Image of Eternity: Roots of Time in the Physical World.—Amherst, Mass.: University of Massachusetts Press, 1980.

212


По этому вопросу см:. Brush S. The Kind of Motion We Call Heat. Book I. Physics and the Atomists. Book II. Statistical Physics and Irreversible Processes.—Amsterdam: North Holland Publishing Company, 1976, а также составленную этим автором комментированную антологию: Kinetic Theory. Vol. I. The Nature of Gases and Heat. Vol. II. Irreversible Processes.—Oxford: Pergamon Press, I965, 1966.

213


Gibbs J W. Elementary Principles in Statistical .......... — N. Y.: Dover Publications, 1960. Ch. XII. [Русский перевод: Гиббс Д ж. В. Основные принципы статистической механики, разработанные со специальным: применением к рациональному обоснованию термодинамики.—В кн.: Гиббс Д ж. В. Термодинамика. Статистическая механика.—М.: Наука, 1982. Гл. XII. О движении систем и ансамблей в течение больших промежутков времени.) Исторический обзор см. в работе: Mehra J. Einsein and the Foundation of Statistical Mechanics. Physica, 1974, vol. 79A, 5, p. 17.

214


Многие марксистские философы приводят следующее высказывание из «Анти-Дюринга» Энгельса: «Движение само есть противоречие». Энгельс Ф. Анти-Дюринг.—В кн.: Маркс К, Энгельс Ф. Соч. Изд. 2-е, т. 20.—М.: Госполитиздат, 1962, с. 123. Ту же мысль приводит в «Философских тетрадях» В. И. Ленин (Конспект книги Гегеля «Наука логики»): «Противоречие же есть корень всякого движения и жизненности» (Ленин В. И Полн. собр. соч., т. 29, с.125).

215


Boltzmann L. Lectures on Gas Theory.—Berkeley: University of California Press, 1964, p. 446f. [Русский перевод: Больцман Л. О статье г-на Цермело «О механическом объяснении необратимых процессов».—В кн.; Больцман Л. Избранные труды.— М.: Наука, 1984.] Цит. по кн.: Popper К. Unended Quest.—La Salle, 111.: Open Court Publishing Company, 1976, p. 160.

216


Popper К.., ibid., p. 160.

217


Voltaire. Dictionnaire Philosophique. — Paris: Gamier, 1954.

218


См. примечание 2 к гл. 7.

219


Popper К. The Arrow of Time. Nature, 1956, vol. 177, p. 538.

220


Gardner М. The Ambidextrous Universe.—N. Y.: Charles Scribner's Sons, 1979, p. 271—272. [Русский перевод: Гарднер М. .Этот правый, левый мир.—М.: Мир, 1967. Серия «В мире науки и техники».]

221


Einstein A., Ritz W.Phys. .........1909, Bd. 10, S. 323. [Русский перевод: Эйнштейн А., Ритц. В. К современному состоянию проблемы излучения.—В кн.: Эйнштейн А. Собрание научных трудов. Т. 3. —М.: Наука, 1966, с. 180.]

222


Poincare H. Les methods nouvelles de la mecanique celeste. — N. Y.: Dover Publications, 1967 [русский перевод: Пуанкаре А. Новые методы небесной механики.—В кн.: Пуанкаре А. Избранные труды, Т. 1, 2. — М.: Наука, 1971, 1972]; Whittaker E. T. A Treatise on the Analitical Dynamics of Particles and Rigid Bodies.— Cambridge: Cambridge University Press, 1965 [русский перевод: Уиттекер Э. Т. Аналитическая динамика.—М".—Л.: ОНТИ, 1937].

223


Moser J. Stable and Random Motions in Dynamical Systems. — Princeton, N. J.: Princeton University Press, 1974.

224


Более общий обзор см. в работе: Lebowitz J., Penrose О. Modern Ergodic Theory. Physics Today, 1973, 2, p. 23—29.

225


Сошлемся на обстоятельную монографию: Balescu R. Equilibrium and Non-Equilibrium Statistical Mechanics.—N. Y.: John Wiley & Sons, 1975. [Русский перевод: Балеску Р. Равновесная и неравновесная статистическая механика. Т. 1, 2.—М.: Мир, 1978.]

226


Arnold V., Avez A. Ergodic Problems of Classical Mechanics.—N. Y,: Benjamin, 1968.

227


Poincare H. Le Hazard,—In: Poincare H. Science et Methode.—Paris: Flammarion, 1914, p. G5. [Русский перевод: Пуанкаре А. Случайность. — В кн.: Пуанкаре А. О науке. —М : Наука, 1983. с. 320—337.]

228


Misra В., Prigogine I., Courbage М. From Deterministic Dynamics to Probabilistic Description.—Physica, 1979, vol 98A, p. 1—26.

229


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука