Читаем Предположения и опровержения. Рост научного знания полностью

Возьмем, например, язык категорических суждений (субъектно-предикатных утверждений), для которого правила вывода формулирует традиционная система категорического силлогизма. Логическая структура этого языка характеризуется тем, что он содержит очень небольшое число логических знаков — знаки для связки и ее отрицания, для общих и частных суждений, возможно, знак для дополнения (или отрицания) так называемых «терминов». Если теперь мы посмотрим на рассуждение, сформулированное в разделе I, то увидим, что его посылки и заключение можно выразить в языке категорических суждений. Однако при этом оказывается невозможным сформулировать общезначимое правило вывода, выявляющее общую форму данного рассуждения, и нельзя защитить справедливость данного рассуждения, если оно выражено в языке категорических суждений. Как только слова «мать Ричарда» мы объединили в один термин — предикат нашей первой посылки, — их уже нельзя разделить снова. Логическая структура этого языка слишком бедна для выражения того факта, что этот предикат некоторым образом содержит субъект второй посылки и часть субъекта третьей посылки. То же самое справедливо для других двух посылок и для заключения. Если же мы попытаемся сформулировать соответствующее правило вывода, то мы получим что-то такое:

«А есть Ь»

« С есть

«Все е есть/>

«А есть (350:)

(Здесь «А» и «С» представляют «Рэчел» и «Ричард»; «Ь» — «мать Ричарда»; «d» — «отец Роберта»; «е» — «мать отца»; «f» — «бабушка» и «g» — «бабушка Роберта».) Конечно, это правило не является общезначимым, так как в языке категорических суждений мы можем построить сколько угодно контрпримеров. Таким образом, даже если некоторый язык достаточно богат для описания всех фактов, которые нам нужны, в нем может не оказаться средств для формулировки правил вывода, охватывающих все переходы от истинных посылок к истинным заключениям.

VIII

Эти последние соображения могут быть полезны для расширения нашего анализа на проблему применимости исчислений логики и арифметики, ибо до сих пор (следуя проф. Райлу) мы рассматривали только применимость правил вывода.

Мне кажется, построение так называемых «логических исчислений» вызвано, главным образом, стремлением создавать такие языки, относительно которых можно «формализовать» все те правила вывода, которые мы интуитивно знаем, как осуществлять, иначе говоря, показать, что мы осуществляем выводы в соответствии всего лишь с несколькими общезначимыми правилами вывода. (В качестве правил образа действий эти правила вывода говорят об исследуемом языке или исчислении. Следовательно, они формулируются не в самом исследуемом исчислении, а в так называемом «метаязыке» этого исчисления, т.е. в языке, на котором мы говорим о самом исчислении.) Например, силлогистическую логику можно рассматривать как попытку построить такой язык, и многие ее приверженцы до сих пор убеждены в том, что попытка удалась и что все действительно общезначимые выводы формализованы в ее фигурах и модусах. (Мы видели, что это не так.) Для достижения этой цели были построены другие системы (на-

351

пример, Principia Mathematica*), которым удалось формализовать практически все общезначимые правила вывода, выполняемые не только в обыденных рассуждениях, но и в математической аргументации. Задачу построения такого языка или исчисления, в котором можно было бы формализовать все общезначимые правила вывода (отчасти с помощью логических формул самого исчисления, а отчасти с помощью нескольких правил вывода, относящихся к этому исчислению), пытались рассматривать как фундаментальную проблему логики. Теперь есть основания считать эту проблему неразрешимой, по крайней мере, если для формализации относительно простых интуитивных выводов мы не разрешаем использовать процедуры совершенно иного характера (например, выводы из бесконечного класса посылок). В настоящее время положение таково: хотя для любого данного общезначимого интуитивного вывода можно построить язык, позволяющий формализовать этот вывод, нельзя построить язык, позволяющий формализовать все общезначимые интуитивные выводы. Эта интересная ситуация, которую, насколько мне известно, впервые рассмотрел Тарский, учитывая исследования Геделя, имеет отношение к нашей проблеме, поскольку показывает, что применимость каждого исчисления (в смысле его пригодности в качестве языка, относительно которого можно сформулировать каждый интуитивно общезначимый вывод) в той или иной степени ограничена.

Теперь я обращаюсь к нашей проблеме применимости, ограничившись, на первое время, логическими исчислениями, точнее, утверждаемыми формулами логических исчислений. Почему эти исчисления, которые могут включать в себя арифметику, применимы к реальности?

Я попробую дать ответ на этот вопрос в виде трех утверждений.

(а) Как правило, эти исчисления представляют собой семантические системы4, т.е. языки, предназначенные для описания определенных фактов. Если они служат этой цели, то в этом нет ничего удивительного.


Перейти на страницу:

Похожие книги

Теория нравственных чувств
Теория нравственных чувств

Смит утверждает, что причина устремленности людей к богатству, причина честолюбия состоит не в том, что люди таким образом пытаются достичь материального благополучия, а в том, чтобы отличиться, обратить на себя внимание, вызвать одобрение, похвалу, сочувствие или получить сопровождающие их выводы. Основной целью человека, по мнению Смита. является тщеславие, а не благосостояние или удовольствие.Богатство выдвигает человека на первый план, превращая в центр всеобщего внимания. Бедность означает безвестность и забвение. Люди сопереживают радостям государей и богачей, считая, что их жизнь есть совершеннейшее счастье. Существование таких людей является необходимостью, так как они являются воплощение идеалов обычных людей. Отсюда происходит сопереживание и сочувствие ко всем их радостям и заботам

Адам Смит

Экономика / Философия / Образование и наука