Читаем Примени математику полностью

Второе требование к проверке - это ее экономность, т. е. использование минимума инструментов или минимума операций. В рассмотренном выше примере, скажем, нам для проверки остается установить только параллельность двух других, неравных сторон четырехугольника, что можно сделать, как сравнив по величине определенные углы, так и сравнив по длине диагонали. Последний путь нам представляется более экономным, поскольку он не требует дополнительных инструментов кроме уже использованных при сравнении двух сторон (для проверки равенства отрезков можно использовать линейку или кронциркуль, представляющий собой циркуль с иглами на обоих концах). Для решения задач настоящего параграфа вам понадобится привлечь разнообразные сведения из геометрии. В связи с этим напомним наиболее важные, на наш взгляд, определения, используемые ниже:

а) трапеция - это четырехугольник, у которого две противоположные стороны параллельны, а две другие непараллельны;

б) параллелограмм - это четырехугольник, у которого противоположные стороны попарно параллельны;

в) ромб - это четырехугольник, у которого все стороны равны;

г) прямоугольник - это четырехугольник, у которого все углы прямые;

д) квадрат - это прямоугольник, являющийся ромбом.

Кроме того, советуем вам припомнить свойства таких основных понятий, как точка, прямая и плоскость.

18.1. Правильность односторонней линейки Прежде чем пользоваться линейкой для проведения прямых линий, вы хотите убедиться в том, что линейка имеет ровный край. Для этого вы проводите по линейке некоторый отрезок АВ, а затем поворачиваете линейку по плоскости бумаги на 180° и проводите отрезок А В по тому же краю линейки еще раз (рис. 107).


Рис. 107


Какой вывод можно сделать, если два проведенных отрезка АВ не совпадут? А если совпадут?

18.2. Исправление предыдущего способа Как исправить описанный в задаче 18.1 способ проверки правильности односторонней линейки, чтобы он позволял однозначно определять, является ли ее край ровным?

18.3. Правильность двусторонней линейки Прежде чем пользоваться линейкой с ровными краями для проведения параллельных линий, вы хотите убедиться в том, что линейка имеет параллельные края. Для этого вы отмечаете две точки А, В и, приставив к ним один край линейки, проводите по другому краю отрезок CD (рис. 108).


Рис. 108


Как нужно повернуть линейку, чтобы после выполнения описанных операций еще раз совпадение двух проведенных отрезков CD означало, что края линейки параллельны, а несовпадение - наоборот.

18.4. Правильность угольника Прежде чем пользоваться угольником с ровными краями для проведения перпендикуляров, вы хотите убедиться в том, что ваш угольник имеет прямой угол. Как это сделать?

18.5. Что за треугольник? Кусок материи имеет форму треугольника. Как, перегибая материю, установить, является ли этот треугольник равносторонним или хотя бы равнобедренным?

18.6. "Проверка квадратности" Четырехугольный кусок материи перегнули по одной диагонали и убедились в точном совмещении двух образовавшихся в результате треугольников (рис. 109). Затем материю развернули, перегнули по другой диагонали и снова убедились в совмещении треугольников.


Рис. 109


Можно ли гарантировать, что этот кусок материи имеет форму квадрата?

18.7. Еще одна "проверка квадратности" Четырехугольный кусок материи перегнули так, что две его противоположные стороны точно совместились (рис. 110). Затем материю развернули и перегнули так, что две другие противоположные стороны точно совместились.


Рис. 110


Можно ли гарантировать, что этот кусок материи имеет форму квадрата?

18.8. Перегибания квадрата Какое наименьшее количество раз необходимо перегнуть четырехугольный кусок материи, чтобы убедиться в том, что он имеет форму квадрата?

18.9. Перегибания круга Кусок материи перегнули по некоторой линии и убедились в точном совмещении двух образовавшихся в результате частей. Затем материю развернули, перегнули по некоторой другой линии и снова убедились в совмещении частей и т. д. Можно ли после нескольких таких проверок гарантировать, что этот кусок материи имеет форму круга?

18.10. Параллельность прямых Можно ли с помощью перегибаний куска материи убедиться в том, что два края этого куска параллельны? Как установить, имеет ли данный кусок материи форму трапеции или параллелограмма?

18.11. Перпендикулярность прямых Кусок материи имеет форму треугольника. Как, перегибая материю, установить, является ли этот треугольник прямоугольным, остроугольным или тупоугольным?

18.12. Вертикальность шеста На недоступном для вас возвышении установлен длинный шест. Как с помощью отвеса проверить его вертикальность?

Перейти на страницу:

Похожие книги

Величайшие математические задачи
Величайшие математические задачи

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга — проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Йэн Стюарт

Математика