Читаем Примени математику полностью

В самом деле, из равенств AB = CD и AC = BD следует, что четырехугольник ABDC - параллелограмм, откуда стороны АС и BD параллельны. С другой стороны, если отрезки АС и BD параллельны, то из равенства AC = BD следует, что четырехугольник ABDC - параллелограмм и АВ = СD. Наконец, так как плоскости стен вертикальны, то их параллельность имеет место тогда и только тогда, когда они пересекаются с невертикальной плоскостью пола по параллельным прямым.

18.16. Действия, описанные в п. а), позволяют однозначно установить параллельность двух данных сторон AD и ВС четырехугольника ABCD. Действительно, если AD||BC, О - точка пересечения диагоналей, Е - середина отрезка AD, F - точка пересечения прямых ЕО и ВС (рис. 125), то ∠ OAD = ∠ OCB, ∠ ODA = ∠ OBC, ∠ AOE = ∠COF, ∠ DOE = ∠BOF, откуда получаем, что треугольники АОЕ и COF, а также треугольники DOE и BOF подобны. Поэтому имеем пропорции


и так как AE = DE, то CF = BF, Это означает, что отрезок EF, соединяющий середины параллельных сторон AD и СВ, проходит через точку пересечения диагоналей четырехугольника ABCD.


Рис. 125


Докажем теперь, что отрезок EG, соединяющий середины непараллельных сторон AD и СН, не проходит через точку О пересечения его диагоналей четырехугольника ADCH (рис. 125). Пусть, напротив, этот отрезок проходит через точку О. Тогда через точку С проведем прямую, параллельную прямой AD, до пересечения в точке В с прямой DH. По доказанному выше имеем CF = BF, а с другой стороны, CG = GH, поэтому FG - средняя линия треугольника СВН, которая не может пересекать соответствующую ей прямую ВН в точке О, что противоречит предположению.

Докажем, что действия п. б) условия задачи также однозначно отвечают на вопрос о параллельности сторон AD и СВ четырехугольника ABCD, В самом деле, пусть точка G - середина диагонали АС. Тогда отрезок EF, соединяющий середины сторон АВ и DC, равен полусумме сторон AD и СВ, т. е. сумме отрезков EG и FG - средних линий треугольников АСВ и ADC, в том и только в том случае, если точка G принадлежит отрезку EF (рис. 126). Поскольку EG||BC и FG||AD, то последнее условие равносильно параллельности отрезка EF сразу двум отрезкам ВС и AD, т. е. параллельности самих сторон AD и СВ, что и требовалось доказать.


Рис. 126


Таким образом, для проверки того, что данный четырехугольник ABCD является трапецией, достаточно соединить отрезком середины двух его противоположных сторон и проверить ровно одно из двух условий: либо этот отрезок равен полусумме двух других сторон четырехугольника (которые тогда как раз и будут основаниями трапеции, а в противном случае ими будут другие стороны), либо этот отрезок проходит через точку пересечения диагоналей. Если оба условия одновременно окажутся выполненными, то четырехугольник ABCD есть не трапеция, а параллелограмм.

18.17. Заметим, что если четырехугольник ABCD является параллелограммом, то все свойства, перечисленные в пп. а), б), в) условия задачи, для него выполнены. Пусть теперь AB = CD и AD = BC (рис. 127), тогда треугольники ABC и ADC равны по трем сторонам, откуда


т. е. противоположные стороны четырехугольника ABCD попарно параллельны. Итак, свойство а) является и необходимым, и достаточным для параллелограмма.


Рис. 127


О свойстве б) этого сказать нельзя, поскольку оно выполняется не только для параллелограмма, но и для любой равнобедренной трапеции (докажите, что ни для каких других выпуклых четырехугольников оно не выполняется).

Наконец, свойство в) является достаточным для того, чтобы объявить четырехугольник ABCD параллелограммом, поскольку равенство отрезков АО и СО, а также ВО и DO (рис. 127) влечет за собой равенство треугольников АОВ и COD, а также AOD и ВОС, откуда в свою очередь вытекает равенство противоположных сторон четырехугольника.

18.18. Для ответа на поставленный в задаче вопрос достаточно проверить, что замкнутая ломаная ABCDA ограничивает четырехугольник, который, согласно определению ромба, уже и будет ромбом. Действительно, так как равнобедренные треугольники ABC и ADC равны, то точки В и D находятся по разные стороны относительно прямой АС (иначе эти точки просто совпали бы друг с другом). Поэтому отрезок АВ не пересекается с отрезком CD, а отрезок AD не пересекается с отрезком ВС, т. е. ломаная ABCDA несамопересекающаяся, а, значит, ограничивает настоящий ромб ABCD.

18.19. Свойство, описанное в п. а), не является достаточным для того, чтобы объявить четырехугольник прямоугольником, поскольку это свойство выполняется также и для любой равнобедренной трапеции (докажите, что ни для каких других выпуклых четырехугольников оно не выполняется).

Перейти на страницу:

Похожие книги

Величайшие математические задачи
Величайшие математические задачи

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга — проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Йэн Стюарт

Математика