Читаем Примени математику полностью

19.13. Общий сейф Три инженера имеют общий сейф. Как запереть этот сейф, чтобы' открывать его можно было только при одновременном присутствии или при согласии всех трех инженеров?

19.14. Общая лодка Три рыбака имеют общую лодку, и у каждого из них есть свой замок и ключ к нему. Как прицепить лодку к берегу, чтобы любой из рыбаков мог ее отцепить с помощью одного только своего ключа.

19.15. Подбор ключей Вы рассыпали связку из 10 ключей от 10 дверей. Каждый ключ подходит только к одной двери. Как за наименьшее число попыток восстановить соответствие между ключами и дверями?

19.16. Пара носков В ящике комода лежат в беспорядке 20 носков: 10 коричневых и 10 черных. Какое наименьшее количество носков достаточно извлечь не глядя из ящика, чтобы среди них наверняка можно было выбрать пару одинаковых носков?

19.17. Пара перчаток В ящике комода лежат в беспорядке 20 перчаток: 5 пар коричневых и 5 пар черных. Какое наименьшее количество перчаток достаточно извлечь не глядя из ящика, чтобы среди них наверняка можно было выбрать пару одноцветных перчаток?

19.18. Трюк с перчатками Лаборанту-химику предстоит работать поочередно с тремя реактивами, вредными для кожи рук. Может ли он обойтись только двумя парами перчаток, если известно, что при работе с любым из этих реактивов на внешней поверхности перчаток непременно остаются частицы реактива, контакт которого с другими реактивами недопустим?

19.19. Угольник в кармане Из куска обыкновенной веревки можно устроить прямоугольный треугольник без использования линейки, транспортира и т. д. Как это сделать?

19.20. Скрепить узлом При обвязывании коробки веревкой часто приходится пересекать ранее сделанные витки. Придумайте способ, как скреплять пересекающиеся веревки узлом, не разрезая самих веревок.

19.21. Одним росчерком Вам нужно прострочить на одежде одну из эмблем, изображенных на рис. 136. Можно ли это сделать, не разрывая нитку в процессе шитья и не проходя ни по одной линии эмблемы дважды?


Рис. 136


19.22. Каркас куба Можно ли из целого куска проволоки длиной менее 1,5 м изготовить каркас куба с ребром 1 дм?

19.23. Экономное разрезание Разделите 5 яблок на 6 человек так, чтобы ни одно яблоко не пришлось разрезать на 6 частей.

19.24. На троих и четверых одновременно Вы купили торт для гостей, но не знаете точно, сколько всего будет человек - трое или четверо. Какое наименьшее число разрезов вы должны заранее сделать, чтобы в любом случае без дополнительных разрезов все могли получить торта поровну?

19.25. На восьмерых Какой торт можно разделить на восемь равных частей тремя прямыми разрезами?

19.26. Отмерить без измерений Как от куска материи длиной 8 м отрезать кусок длиной 5 м, не имея под рукой измерительных инструментов?

19.27. Усадка материи Во время стирки материя садится на 1/16 по длине и на 1/18 по ширине. Сколько метров материи шириной 0,9 м надо купить, чтобы после стирки иметь 51 м2?

19.28. Велик ли оставшийся кусок? После стирки кусок мыла уменьшился на 1/6 часть как по ширине, так и по высоте. На сколько таких же стирок хватит оставшегося куска мыла?

19.29. Статистическое исследование В одном городе Канады 70% жителей знают французский язык и 80% - английский язык. Сколько процентов жителей этого города знают оба языка?

19.30. Эффект снижения цены Пусть цены на какие-то товары снижены на 20%. На сколько процентов больше можно купить этих товаров по сниженной цене на отведенную для них сумму?

19.31. Денежный перевод За пересылку денег по почте с отправителя взимают 2% переводимой суммы, Какую наибольшую сумму денег можно перевести, имея на руках ровно 100 рублей?

19.32. Размеры и цены На рынке продаются два арбуза разных размеров: один арбуз в обхвате на четверть больше другого, зато в полтора раза дороже. Какой арбуз выгоднее купить?

19.33. Покупка мандаринов Какие мандарины - крупные или мелкие - выгоднее покупать, если толщина кожуры у них одинакова?

19.34. Хозяйке на заметку Какую картошку выгоднее чистить: крупную или мелкую?

19.35. Кажущаяся половина Из фужера конической формы, наполненного соком (рис. 137), отпили такую часть содержимого, что его высота уменьшилась вдвое. Какая часть была отпита?


Рис. 137


19.36. Две кружки Одна кружка вдвое ниже другой, зато в полтора раза шире. Какая из двух кружек вместительнее?

19.37. Ровно полкружки Кружка цилиндрической формы наполнена доверху молоком. Можно ли отлить ровно половину содержащегося в ней молока, не пользуясь измерительными приборами?

Перейти на страницу:

Похожие книги

Величайшие математические задачи
Величайшие математические задачи

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга — проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Йэн Стюарт

Математика