Читаем Программирование на языке Пролог для искусственного интеллекта полностью

  выводит символ с заданным ASCII-кодом

get0( КодСимвола)

  вводит следующий символ

gеt( КодСимвола) 

  вводит ближайший следующий "печатаемый" символ

• Две процедуры облегчают форматирование:

nl      начинает новую строку

tab( N) выводит N пробелов

• Процедура nаmе( Атом, СписокКодов) осуществляет синтез и декомпозицию атомов. СписокКодов — список ASCII кодов символов, образующих Атом

<p>Глава 7</p><p>Другие встроенные процедуры</p>

В данной главе мы изучим некоторые другие, не упоминавшиеся ранее встроенные процедуры, предназначенные для более серьезного программирования на Прологе. Эта новые процедуры дают возможность запрограммировать операции, которые известными нам средствами запрограммировать невозможно. Один набор таких процедур касается обработки термов: эти процедуры проверяют, была ли некоторая переменная конкретизирована целым числом, они разбирают термы на части, конструируют новые термы и т.д. Другой полезный набор процедур работает с "базой данных": процедуры из этого набора добавляют новые отношения в программу или удаляют из нее существующие.

Множество встроенных процедур сильно зависит от конкретной реализации Пролога. Однако процедуры, обсуждаемые в данной главе, имеются во многих реализациях. Различные реализации могут иметь свои наборы дополнительных средств.

<p>7.1. Проверка типов термов </p><p>7.1.1. Предикаты <emphasis>var</emphasis>, <emphasis>nоnvar</emphasis>, <emphasis>atom</emphasis>, <emphasis>integer</emphasis>, <emphasis>atomic</emphasis></p>

Термы бывают разных типов: переменные, целые числа, атомы и т.д. Если терм — переменная, то в некоторый момент выполнения программы он может оказаться конкретизированным или не конкретизированным. Далее, если он конкретизирован, то его значение может быть атомом, структурой и т.п. Иногда бывает полезно узнать, каков тип этого значения. Например, пусть мы хотим сложить значения двух переменных X и Y:

Z is X + Y

Перед вычислением этой цели необходимо, чтобы X и Y были конкретизированы целыми числами. Если у нас нет уверенности в том, что X и Y действительно конкретизированы целыми числами, то перед выполнением арифметического действия нужно проверить это программно.

Для этого следует воспользоваться встроенным предикатом integer (целое). Предикат integer( X) принимает значение истина, если X — целое или если X — переменная, имеющая целое значение. Будем говорить в этом случае, что X "обозначает" целое. Цель для сложения X и Y можно тогда "защитить" такой проверкой переменных X и Y:

..., integer( X), integer( Y), Z is X + Y, ...

Если неверно, что X и Y оба являются целыми, то система и не будет пытаться их сложить. Таким образом, цели integer "охраняют" цель Z is X + Y от бессмысленного вычисления.

Встроенные предикаты этого типа таковы: var (переменная), nonvar (непеременная), atom (атом), integer (целое), atomic (атомарный). Они имеют следующий смысл:

var( X)

Эта цель успешна, если X в текущий момент — не конкретизированная переменная.

nonvar( X)

Эта цель успешна, если X — терм, отличный от переменной, или если X — уже конкретизированная переменная.

atom( X)

Эта цель истинна, если X обозначает атом.

integer( X)

Цель истинна, если X обозначает целое.

atomic( X)

Цель истинна, если X обозначает целое или атом.

Следующие примеры вопросов к пролог-системе иллюстрируют применение этих встроенных предикатов:

?- var( Z), Z = 2.

Z = 2

?- Z = 2, var( Z).

no

?- integer( Z), Z = 2.

no

?- Z = 2, integer( Z), nonvar( Z).

Z = 2

?- atom( 22).

no

?- atomic( 22).

yes

?- atom( ==>).

yes

?- atom( p( 1) ).

no

Необходимость в предикате atom продемонстрируем на следующем примере. Пусть мы хотим подсчитать, сколько раз заданный атом встречается в некоторой списке объектов. Для этого мы определим процедуру

счетчик( А, L, N)

где А — атом, L — список и N — количество вхождений этого атома. В качестве первой попытки можно было бы определить счетчик так:

счетчик( _, [], 0).

счетчик( A, [A | L], N) :- !,

 счетчик( A, L, N1),

  % N1 - число вхождений атома в хвост

 N is N1 + 1.

счетчик( А, [ _ | L], N) :-

 счетчик( A, L, N).

Теперь на нескольких примерах посмотрим, как эта процедура работает:

?- счетчик( а, [а, b, а, а], N).

N = 3

?- счетчик( a, [a, b, X, Y], Na).

Na = 3

...

?- счетчик( b, [a, b, X, Y], Nb).

Nb = 3

...

?- L=[a, b, X, Y], счетчик( а, L, Na), счетчик( b, L, Nb).

Na = 3

Nb = 1

X = a

Y = a

...

Перейти на страницу:

Похожие книги

Adobe InDesign CS3
Adobe InDesign CS3

Книга посвящена верстке и макетированию в программе Adobe InDesign CS3. Помимо того что в ней описываются возможности программы, рассматриваются также принципы и традиции верстки, приводятся примеры решения типичных задач. Все это позволит читателю не только овладеть богатым инструментарием программы, но и грамотно применять его.Материал книги разделен на логические части: теоретические сведения, инструментарий программы, решение задач, – а также рассчитан на два уровня подготовки читателей – начинающих и опытных пользователей, что выгодно отличает книгу от других изданий. Это позволит применять ее как новичкам для знакомства с программой, так и пользователям со стажем для пополнения своих знаний.

Владимир Гавриилович Завгородний , Владимир Завгородний

Программирование, программы, базы данных / Программное обеспечение / Книги по IT
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT