Возьмем Золотой Ключ и перевернем его вверх ногами, т.е. возьмем обратную величину к каждой стороне равенства в выражении
(7.2). Очевидно, еслиТеперь раскроем скобки в правой части. На первый взгляд, это сильно сказано: как-никак, сомножителей в скобках бесконечно много. На самом деле процедура требует несколько большего внимания и обоснования, чем мы можем здесь ей уделить, но в конце концов мы получим полезный и верный результат, так что в данном случае цель оправдывает средства.
Раскрытие скобок все мы изучали в курсе элементарной алгебры. Чтобы перемножить
Грандиозность того, что получается, начинает внушать некоторые опасения. А ведь нам предстоит перемножить бесконечное число скобок! Фокус состоит в том, чтобы посмотреть на это дело глазами математика. Из чего составлено выражение
(15.2)? Ну, это сумма некоторого числа членов. Как эти члены выглядят? Выберем наугад какой-нибудь один из них, скажемКак только вы смогли это увидеть, перемножение бесконечного числа скобок больше не проблема. В ответе будет сумма — разумеется, бесконечная — членов, каждый из которых получен путем выбора одного числа из каждой скобки и перемножения всего, что выбрали. Если сложить результаты всех таких возможных выборов, то и получится ответ. Однако в том виде, как эта процедура описана, она все еще выглядит несколько устрашающей. Согласно сказанному, каждый член в нашей бесконечной сумме есть бесконечное произведение. Да, так оно и есть, но, поскольку каждая скобка в правой части выражения
(15.1)содержит 1, наша жизнь делается приятнее за счет того, что мы будем выбирать бесконечное число единиц и лишь конечное число не-единиц. В конце концов, поскольку каждый не-единичный член в каждой скобке есть число между - 1/ 2и 0, перемножение бесконечно большого числа таких членов дает результат, величина которого (я имею в виду — без учета знака) заведомо не больше, чем ( 1/ 2) , а это равно нулю! Теперь смотрите, как я построю бесконечную сумму.Первый член в бесконечной сумме: берем 1 из каждой скобки. Это даст бесконечное произведение 1x1x1x1x1x…, значение которого есть, конечно, просто 1.
Второй член: берем 1 из всех скобок, кроме первой. Из первой же возьмем
Третий член: берем 1 из каждой скобки, кроме второй. А из второй возьмем
Четвертый член… Я думаю, понятно, что, если брать 1 из каждой скобки, кроме
Но это еще не конец. При перемножении скобок возникает сумма
(Заметим, что здесь работают два простых правила арифметики. Одно — это правило знаков, гласящее, что минус умножить на минус дает плюс, а другое — 7-е правило действий со степенями, согласно которому
Так что наряду с членами, уже собранными в выражении
(15.3), имеется новый набор, каждый член в котором происходит из каждой пары простых чисел, как 5 и 13, и которые все входят со знаком плюс. Таким образом, выражение (15.3)разрослось до такого:где каждое число во второй строке есть произведение двух различных простых.