Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

А ведь мы едва начали нашу деятельность по перемножению бесконечного числа скобок. Следующий шаг состоит в том, чтобы перебрать все возможные способы выбрать три не-единицы (при всех остальных единицах). Например, 1x x1x1x x x1x1x…, из чего возникает .Теперь результат разрастается до

где каждое число в третьей строке есть произведение трех различных простых.

В предположении, что мы продолжаем так поступать, а также в предположении, что получающиеся члены можно переставлять, как мы пожелаем, выражение (15.1)превращается в следующее (15.4):

Натуральные числа в правой части — это… что? Это заведомо не все натуральные числа: 4, 8, 9 и 12 там отсутствуют. Но и не простые: присутствующие там 6, 10, 14 и 15 не являются простыми. Если оглянуться на процесс перемножения этого бесконечного количества скобок, то станет ясно, что ответ такой: каждое натуральное число, которое равно произведению нечетного числа (включая 1) различных простых, взятое со знаком минус, и, кроме того, каждое натуральное число, которое равно произведению четного числа различных простых, взятое со знаком плюс. Отсутствуют такие числа, как 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, … — т.е. числа, которые делятся на квадрат некоторого простого.

Поприветствуем функцию Мебиуса! Она названа по имени немецкого математика и астронома Августа Фердинанда Мебиуса (1790–1868). [137]

Рисунок 15.4.Лента Мебиуса и муравей на ней.

В наше время ее общепринято обозначать греческой буквой , что произносится как «мю» — греческий эквивалент буквы «м». [138]Приведем полное определение функции Мебиуса.

• Ее область определения есть N, то есть все натуральные числа 1, 2, 3, 4, 5, ….

•  (1) = 1.

•  ( n) = 0, если среди делителей числа nесть квадрат.

•  ( n) = -1, если число  nпростое или является произведением нечетного числа различных простых чисел.

•  ( n) = 1, если число nявляется произведением четного числа различных простых чисел.

Такое определение функции может показаться вам страшно громоздким. Однако функция Мебиуса приносит колоссальную пользу в теории чисел и далее в этой книге будет играть ведущую роль. В качестве примера приносимой ею пользы заметим, что все трудоемкие алгебраические действия, через которые нам пришлось продираться, сводятся к изящному выражению (15.5):


V.

B истории Гипотезы Римана наряду с самой функцией (n)не меньшую роль играет ее нарастающее значение, т.е. результат сложения (1) + (2) + (3) + … + ( k) для некоторого числа k. Так определяется «функция Мертенса» М(k). Ее первые 10 значений (т.е. значения при k= 1, 2, 3, …, 10) равны 1, 0, -1, -1, -2, -1, -2, -2, -2, -1. Функция M(k)весьма нерегулярна — она совершает колебания в обе стороны вокруг нулевого значения в стиле, который математики называют «случайными блужданиями». Для аргументов, равных 1000, 2000, …, 10 000, ее значения равны 2, 5, -6, -9, 2, 0, -25, -1, 1, -23. Для аргументов миллион, 2 миллиона, …, 10 миллионов ее значения равны 212, -247, 107, 192, -709, 257, -184, -189, -340, 1037. Если не обращать внимания на знаки, то видно, что величина функции M(k)возрастает, но помимо этого никакой ясной картины не просматривается.

Из выражения (15.5)видно, что поведение функций и M(накапливающейся ) жестко привязано к дзета-функции, а тем самым и к Гипотезе Римана. На самом деле если вам удастся доказать приведенную ниже теорему 15.1, то вы сможете заключить, что Гипотеза Римана верна!

Теорема 15.1

M(k) = ( k1/2).

Однако если теорема 15.1 не верна, то отсюда еще не следует, что не верна Гипотеза. Математики говорят, что теорема 15.1 сильнее Гипотезы. [139]Слегка ослабленный вариант, сформулированный как теорема 15.2, в точности равносилен Гипотезе:

Теорема 15.2

M(k) = ( k1/2+ ) для любого сколь угодно малого числа .

Если теорема 15.2 верна, то верна и Гипотеза; а если она не верна, то не верна и Гипотеза. Это в точности эквивалентные теоремы. Мы еще вернемся к этому в главе 20.vi.

Глава 16. Вверх по критической прямой

I.

В 1930 году Давиду Гильберту исполнилось 68 лет. В соответствии с принятыми в Геттингенском университете правилами он вышел на пенсию. Посыпались почести. Среди них — решение властей Кенигсберга предоставить прославленному сыну этого города почетное гражданство. Церемония должна была состояться на открытии запланированного на осень того года съезда Общества немецких ученых и врачей. Понятно, что случай обязывал к ответному слову. Таким образом, 8 сентября 1930 года в Кенигсберге Гильберт выступил со своей второй великой публичной речью.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука