Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

Мы говорили, что у математиков есть способ обратить это выражение — вывернуть его наизнанку, т.е. выразить J(x)через дзета-функцию. Процедура обращения в действительности и длинна, и сложна; в большинстве из составляющих ее шагов задействована математика, выходящая за рамки того, что приводится в этой книге. Поэтому-то я и перескочил прямо к окончательному результату — выражению (21.1). Тем не менее, как мне кажется, я в состоянии объяснить одну часть этой процедуры. Дело в том, что один шаг в этом обращении заключается как раз в выражении дзета-функции через ее нули.

Сама по себе идея выражения функций через их нули не несет в себе особой новизны для тех, кто изучал алгебру в старших классах. Рассмотрим старые добрые квадратные уравнения, выбрав в качестве примера то, которое мы использовали в главе 17.iv, а именно z 2- 11 z+ 28 = 0 (однако будем писать букву zвместо x, поскольку сейчас мы находимся в царстве комплексных чисел). Левая часть этого уравнения, разумеется, представляет собой функцию, причем полиномиальную функцию (т.е. многочлен). Если мы подставим в нее любое значение аргумента z, то после выполнения определенных арифметических действий получим значение функции. А если, скажем, мы подставим аргумент 10, то значением функции будет 100 - 110 + 28, что дает 18. Если подставим аргумент i, то значением функции будет 27 - 11 i.

А каковы решения уравнения z 2- 11 z+ 28 = 0? Как мы видели в главе 17, это 4 и 7. При подстановке любого из этих чисел в левую часть уравнение превращается в верное равенство, поскольку левая часть оказывается равной нулю. Другой способ выразить то же самое — это сказать, что 4 и 7 являются нулями функции z 2- 11 z+ 28.

Теперь, зная нули, мы можем разложить эту функцию на множители. Она разлагается на множители как ( z - 4)( z - 7). По правилу знаков это можно записать и как (4 -  z)(7 -  z). Еще один способ записи — это 28(1 -  z/4)(1 -  z/7). Смотрите: так или иначе, мы выразили функцию z 2- 11 z+ 28 через ее нули! Разумеется, такое можно делать не только для квадратичных функций. Многочлен пятой степени z 5- 27 z 4+ 255 z 3- 1045 z 2+ 1824 z- 1008 тоже можно записать через его нули (каковыми являются числа 1, 3, 4, 7, 12). Вот как: -1008(1 -  z/1)(1 -  z/3)(1 -  z/4)(1 -  z/7)(1 -  z/12). Любую полиномиальную функцию можно переписать через значения ее нулей.

Полиномиальные функции обладают интересным свойством с точки зрения теории функций комплексной переменной. Область определения полиномиальной функции составляют все комплексные числа. Полиномиальная функция никогда не «обращается в бесконечность». Нет такого значения аргумента z, при котором оказалось бы невозможным вычислить ее значение. При вычислении значения полиномиальной функции для любого заданного значения аргумента используются только возведение аргумента в положительные целые степени, умножение этих степеней на числа и сложение полученных результатов друг с другом. Такое можно проделать со всяким числом.

Функции, область определения которых составляют все комплексные числа и которые ведут себя достаточно симпатичным образом (для чего имеется точное математическое определение!), называются целыми функциями. [195]Все полиномиальные функции — целые. Показательная функция — тоже целая. Однако рациональные функции, которые мы рассматривали в главе 17.ii, не целые, потому что знаменатели в них могут обращаться в нуль. Функция ln также не является целой: у нее нет значения при нулевом аргументе. Подобным же образом у дзета-функции Римана нет значения при аргументе, равном единице, а потому она не является целой функцией.

Целая функция может не иметь нулей вовсе (как, например, показательная функция: равенство e z= 0 никогдане выполняется), может иметь их несколько (как, например, полиномиальные функции: числа 4 и 7 — нули функции z 2- 11 z+ 28), а может — бесконечно много (как, например, синус, который обращается в нуль при всех целых кратных числа ). [196]Ну и раз полиномиальные функции выражаются через свои нули, интересно, можно ли все целые функции выразить подобным же образом? Пусть у нас есть какая-нибудь целая функция — назовем ее F, — определяемая бесконечной суммой вида F(z) = a + bz + cz 2 + dz 3 + …, и пусть еще нам удалось узнать, что у этой функции бесконечно много нулей; назовем их , , , …. Можно ли выразить данную функцию через ее нули, в виде бесконечного произведения F(z) = а(1 -  z/)(1 -  z/)(1 -  z/)… — как если бы бесконечная сумма была чем-то вроде «сверхмногочлена»?

Ответ таков: да, при определенных условиях можно. И когда такое удается сделать, получается, как правило, чрезвычайно полезная штука. Например, именно таким способом — применив подобное рассуждение к синусу — Эйлер и решил базельскую задачу.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука