Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

Но какая нам польза от всего этого для дзета-функции, которая, увы, не является целой функцией? Дело в том, что в ходе упомянутой выше сложной процедуры обращения Риман преобразовал дзета-функцию в нечто слегка от нее отличающееся — в целую функцию, нули которой суть в точности нетривиальные нули дзета-функции. И эту-то слегка измененную функцию можно выразить через данные нули. (Тривиальные нули спокойно исчезли в ходе преобразования.)

Таким вот образом, после некоторой дополнительной обработки, в конце концов и получается выражение Li (x ), в котором сумму надо брать по всем нетривиальным нулям дзета-функции.

И теперь, чтобы продемонстрировать важность вторичного члена в выражении (21.1), а также связанные с ним проблемы, мы разберем его на части. Для этого начнем с его сердцевины и будем двигаться изнутри наружу, т.е. сначала рассмотрим x , затем функцию Li, а потом уже — вопрос о суммировании по всем возможным значениям буквы .


IV.

Вот, стало быть, перед нами число x, являющееся вещественным. (Окончательная цель всего упражнения состоит в том, чтобы получить формулу для функции (x), а она осмысленна только для вещественных чисел и даже, честно говоря, для натуральных; правда, мы изменили обозначения от Nк x, чтобы использовать средства математического анализа.) С этим xмы делаем такое: возводим его в степень , представляющую собой комплексное число, причем если Гипотеза Римана верна, то комплексное число вида 1/ 2+ ti(где t— некоторое вещественное число). Это действие само по себе заслуживает обсуждения.

При возведении вещественного числа xв комплексную степень а + biправила комплексной арифметики предписывают следующее. Модульрезультата — т.е. расстояние до нуля, измеряемое по прямой, — есть x a. Буква bна модуль никак не влияет. Зато фазарезультата — насколько он повернут и в каком секторе комплексной плоскости лежит — зависит от xи b, но aна фазу не влияет.

При возведении вещественного числа xв степень 1/ 2+ ti, таким образом, модуль результата есть xв степени 1/ 2, т.е. x.Фаза при этом может оказаться какой угодно — результат может угодить в любой сектор комплексной плоскости, при условии только, что расстояние от нуля равно x. Иными словами, если при заданном xвычислять значения выражения x для множества различных нулей дзета-функции, то получаемые числа будут разбросаны по окружности радиуса xв комплексной плоскости с центром в нуле (при условии, что ГР верна!).

На рисунке 21.2 отмечены точки, представляющие собой результат возведения числа 20 в степень, определяемую первым, вторым, третьим, …, двадцатым нулем дзета-функции. Видно, что результаты разбросаны по окружности радиуса 20 (что равно 4,47213…) в комплексной плоскости, причем без особого порядка. Это происходит потому, что функция 20 sотображает критическую прямую в окружность радиуса 20 таким образом, что критическая прямая (вместе со всеми нанесенными на нее нулями дзета-функции) наматывается и наматывается на эту окружность, делая это бесконечное число раз. На математическом языке данная окружность в плоскости значений задается как 20 критическая прямая.

Рисунок 21.2.Плоскость значений для функции w= 20 z. Показаны значения wдля первых двадцати нетривиальных нулей дзета-функции.

Представим себе, что наш приятель муравей Арг топает на север по критической прямой в плоскости аргумента, а на его приборчике выставлена функция 20 s; тогда его брат-близнец, муравей Знач, отслеживая соответствующие значения в плоскости значений, нарезает круги по нашей окружности. Он продвигается против часовой стрелки, и к тому моменту, как муравей Арг доберется до первого нуля дзета-функции, муравей Знач одолеет уже почти три четверти своего седьмого круга. [197]


V.

А теперь мы найдем, одно за одним, значения функции Li во всех этих точках — во всем бесконечном числе этих точек. К сожалению, это комплексные числа, а мы определили функцию Li только для вещественных чисел — как площадь под кривой. Имеется ли способ определить Li также и для комплексных чисел? Что из себя представляют интегралы для комплексных чисел? Да, способ определить эту функцию есть; и, кроме того, да, существует способ интегрировать, когда в этом деле участвуют комплексные числа. Интегрирование на самом деле представляет собой один из важнейших элементов комплексного анализа, объект самых прекрасных и мощных теорем во всем этом разделе. Не вдаваясь в подробности, я скажу только, что, да, функция Li (z)определена [198]для комплексных чисел z.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука