Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

В подобных ситуациях математиков не устраивает просто найти приближение, особенно когда рассматриваемый ряд сходится медленно, как в данном случае. (Сумма 10 000 членов все еще на 0,006 процента отличается от значения полной, бесконечной суммы, которая равна 1,6449340668….) Выражается ли ответ дробным числом, скажем,  9108/ 5537или 560 837 199/ 340 948 133? Или он имеет более сложный вид, может быть, в него входят корни, например, 46/ 17, или же корень пятой степени из  11 983/ 995, или же корень восемнадцатой степени из 7776 [36]? Чему равенответ? Неспециалист решил бы, что вполне достаточно знать это число с точностью до нескольких знаков после запятой. Но нет, математики желают знать его точно,если только это возможно. Не просто потому, что они одержимы навязчивой идеей, но и потому, что по опыту знают: получение точногоответа нередко открывает ранее запертые двери и проливает свет на более глубокие математические вопросы. Математический профессиональный термин для такого точного представления — это «замкнутый вид». А десятичное приближение, неважно, насколько точное, — «незамкнутый вид». Число 1,6449340668… — это незамкнутый вид. Сами видите, что многоточие сообщает нам, что правая часть не завершена и при желании можно проделать вычисление, чтобы добавить туда еще цифры.

Базельская задача была поставлена так: найти замкнутый вид ряда из обратных квадратов. Задача была в конце концов побеждена в 1735 году, через 46 лет после своей постановки, и сделал это молодой Леонард Эйлер, трудившийся в далеком Санкт-Петербурге. Потрясающий ответ имеет вид  2/6. Да, это «то самое» , магическое число, равное 3,14159265…, — отношение длины окружности к ее диаметру. Что же оно делает в задаче, которая не имеет ни малейшего отношения не только к окружностям, но и вообще к геометрии?! Современных математиков это не так уж изумляет, они привыкли, что можно встретить в математике где угодно, но в 1735 году этот ответ произвел сильное впечатление.

Базельская задача подводит нас к дзета-функции — объекту, с которым мы имеем дело в Гипотезе Римана. Но прежде чем мы сможем познакомиться с дзета-функцией, надо вспомнить кое-что из математических основ: степени, корни и логарифмы.


II.

Степени — это прежде всего повторяющееся умножение. Число 12 3— это 12x12x12, где перемножаются три сомножителя, а 12 5— это 12x12x12x12x12, где сомножителей пять. Что получится, если умножить 12 3на 12 5? Это будет (12x12x12)x(12x12x12x12x12), что, конечно, составляет 12 8. Надо просто сложить степени: 3 + 5 = 8. В этом и состоит первое великое правило действий со степенями.

1-е правило действий со степенями:

x mxx n = x m + n.

(Давайте я здесь прямо и скажу, что во всем этом разделе мы будем иметь дело только с положительными значениями буквы x. Возводить в степень нуль — пустая трата времени, а возведение в степень отрицательных чисел приводит к занятным проблемам, о которых мы поговорим позднее.)

Что будет, если разделить 12 5на 12 3? То есть вычислить (12x12x12x12x12)/(12x12x12). Можно сократить три множителя 12 сверху и снизу, и в результате останется 12x12, т.е. 12 2. Как видно, это все равно что вычесть степени.

2-е правило действий со степенями:

x m: x n = x m - n.

А теперь возведем 12 5в куб: (12x12x12x12x12)x(12x12x12x12x12)x(12x12x12x12x12) дает 12 15. На этот раз степени перемножаются.

3-е правило действий со степенями:

(x n) m= x mn.

Таковы три самых важных правила, которые говорят нам, как обращаться со степенями. В дальнейшем мы будем ссылаться на них как на «правила действий со степенями» без дополнительных объяснений. Однако это пока не все правила. Нам потребуется еще несколько, потому что до сих пор у нас были степени, выражаемые положительными целыми числами. А как обстоит дело с отрицательными и дробными степенями? А со степенью нуль?

Начав с последнего, заметим, что если x 0вообще что-нибудь будет означать, то хорошо бы добиться согласованности с теми правилами, которые у нас уже есть, потому что они являются прямым выражением здравого смысла. Возьмем во 2-м правиле nравным m.Тогда в правой части, как видно, получится x 0. А в левой части будет x m: x m.Но когда число делится само на себя, получается единица.

4- e правило действий со степенями:

x0= 1 для всякого положительного числа x.

2-е правило можно использовать и для того, чтобы придать смысл отрицательным степеням. Разделим 12 3на 12 5. Согласно 2-му правилу, ответ должен быть равен 12 -2. Но при этом он равен и (12x12x12)/(12x12x12x12x12), что после сокращения трех множителей 12 в числителе и знаменателе даст 1/12 2.

5-е правило действий со степенями:

x -n=1 /x n(в частности, x -1= 1/ x).

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука