Среди них Ян Баптист ван Гельмонт, врач и испытатель живой природы. После смерти ван Гельмонта его сын объединяет работы в собрание сочинений Ortus Medicinae и публикует их в 1648 году в издательстве семьи Эльзивир. Спустя столетия оно, кстати, остается ведущим научным издательством, публикующим научные работы высокого уровня.
В Ortus Medicinae Ян Баптист ван Гельмонт задается вопросом о природе пищеварения и предполагает, что есть некоторое вещество – фермент (от лат. fermentum – закваска), которое способствует перевариванию еды. Это было смелое предложение по тем временам, когда полагалось, что пищеварение происходит за счет тепла тела живых существ.
Спустя почти два столетия великий французский ученый – естествоиспытатель Луи Пастер исследовал, как дрожжи влияют на процесс спиртового брожения. Он предположил, что все протекает под действием некоторой «жизненной силы» – «фермента», содержащегося только в живом организме. Здесь он, пожалуй, немного ошибся – как потом выяснится, ферменты все же можно выделить из организмов и использовать самостоятельно.
Возможность брожения в отсутствии живых клеток была продемонстрирована немецким химиком Эдуардом Бухнером уже после смерти Луи Пастера. Стало известно, что спиртовое брожение можно осуществить с помощью дрожжевого сока, очищенного от клеток. Такие системы, обладающие ферментативной активностью в отсутствие живых клеток, в то время называли энзимы (от греч. ζύµη – закваска).
Красивым финалом этой дискуссии стало выделение высокочистого образца фермента – уреазы – химиком Джеймсом Самнером в 1926 году. К 1935 году было выделено еще несколько ферментов белковой природы, и научная общественность окончательно убедилась, что ферменты – белки.
Не прошло и пятидесяти лет, как биокаталитические свойства обнаружились у некоторых рибонуклеиновых кислот (РНК), которые были названы рибозимы. Это очень интересное и неожиданное открытие совершили Томас Чек и Синди Олтмен. До этого считалось, что только белки могут иметь каталитическую функцию, а открытие Чека и Олтмена изменило это представление. В 1989 году они были удостоены Нобелевской премии по химии. В пищевой промышленности рибозимы играют опосредованную роль, и здесь мы лишь упомянем их для поддержания справедливости. Вернемся же к ферментам – белкам.
На данный момент только в организме человека описаны тысячи ферментов, и их классифицируют в первую очередь по типу катализируемой реакции (см Таблицу 1). Почти все они, за исключением редких случаев типа лизоцима и пепсина, оканчиваются на – аза. Например, формиатдегидрогеназа, которая ускоряет реакцию превращения иона муравьиной кислоты (формиата) в углекислый газ. Реакция кажется очень простой, а для биотехнологии фермент очень важный, участвует, например, в синтезе особо чистых веществ для производства лекарств!
Согласно решению Международного союза биохимии и молекулярной биологии 2018 года, существуют 7 классов ферментов. Каждый класс делится на подклассы и подподклассы, которые уточняют нюансы конкретных реакций.
Каждый фермент получает собственный классификационный номер, состоящий из четырех цифр. Например, ЕС 1.1.1.1 – это фермент класса оксидоредуктаз (класс 1), который окисляет спирт в присутствии производного витамина В3 и имеет порядковый номер в этом подподклассе 1. Это алкогольдегидрогенеза, фермент, ускоряющий реакцию окисления этанола до ацетальдегида.
Если вам интересно покопаться в классификации ферментов или получить больше информации про какой-то особенный фермент, рекомендуем базу данных BRENDA, доступную по QR-коду ниже.
Таблица 1. Классы ферментов
Несмотря на такое огромное разнообразие ферментов, классов и подклассов, главной общей особенностью ферментов является их способность невообразимо ускорять реакции в живых системах. Например, фермент с трудновыговариваемым названием оротидин‑5’-фосфатдекарбоксилаза относится к классу лиаз и участвует в синтезе важного предшественника РНК – уридинмонофосфата. Этот фермент ускоряет реакцию в 1018 раз! Трудно даже осознать эту скорость. Без фермента эта реакция шла бы 32 миллиарда лет, а с ферментом – всего 1 секунду. Вдумайтесь, нашей Вселенной «всегонавсего» 26 миллиардов лет – о какой жизни на Земле шла бы речь без ферментов!
Попробуем разобраться в причинах такого ускорения и начнем с обсуждения структуры ферментов. Большинство ферментов представляют собой глобулярные белки, то есть полипептидные цепи в них свернуты в оптимальные «клубочки» – глобулы. За счет пространственной организации рядом могут оказаться аминокислотные остатки, которые в первичной цепочке находятся очень далеко друг от друга. Это позволяет образовывать настоящий «ландшафт» глобулы с впадинами и настоящими расщелинами, а также формировать сердце фермента – его активный центр.