Читаем Против богов. Укрощение риска полностью

О том, насколько сильный ажиотаж вызвало появление книги Фибоначчи, можно судить по тому, что от нее пришел в восторг даже такой блистательный и творческий человек, каким был император Фридрих. Этот монарх, правивший с 1211-го по 1250 год, сочетал жестокость и властность с живым интересом к науке, искусству и философии государственного правления. В Сицилии он разрушил феодальные замки и упразднил их гарнизоны, обложил налогом и отрешил от управления государством духовенство, устранил все ограничения, препятствующие импорту, и отменил государственную монополию.

Фридрих не терпел никакого противодействия. В отличие от своего деда Фридриха Барбароссы, который был унижен папой в битве при Легнано в 1176 году, этот Фридрих, кажется, получал удовольствие от нескончаемых столкновений с папством. Его непреклонность принесла ему даже не одно, а два отлучения. Во втором случае папа Григорий IX объявил Фридриха лишенным императорской короны, назвав его еретиком, распутником и Антихристом. Фридрих ответил жестоким нападением на владения папы, а тем временем его флот задержал большую делегацию прелатов, направлявшихся в Рим для участия в соборе, который должен был лишить его императорской короны.

Фридрих окружил себя ведущими интеллектуалами своего времени, пригласив многих из них к себе в Палермо. Он построил на Сицилии несколько великолепнейших замков и в 1224 году основал университет для подготовки государственных служащих – первый европейский университет, получивший устав от монарха.

Фридрих был в восхищении от книги Фибоначчи. Как-то в 1220-х годах во время визита в Пизу он пожелал его увидеть. На аудиенции Фибоначчи решал алгебраические задачи, в том числе кубические уравнения, поочередно предлагаемые ему одним из многих придворных ученых. Это побудило его написать еще одну книгу – «Liber Quadratorum», или «Книгу о квадратах», которую он посвятил императору.

Фибоначчи широко известен благодаря короткому отрывку из «Liber Abaci», содержание которого производит впечатление математического чуда. В отрывке обсуждается задача о том, сколько кроликов родится в течение года от одной пары кроликов в предположении, что каждый месяц каждая пара рождает другую пару и что кролики начинают рожать с двухмесячного возраста. Фибоначчи доказывает, что в этом случае потомство исходной пары к концу года достигнет 233 пар.

Дальше он утверждает нечто еще более интересное. Предположим, что первая пара кроликов не будет размножаться до второго месяца. К четвертому месяцу начнут размножаться их первые двое отпрысков. Коль скоро процесс продолжится, числа пар в конце каждого месяца будут такими: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233. Здесь каждое последующее число является суммой двух предыдущих. Если кролики продолжат в том же духе в течение ста месяцев, число пар достигнет 354 224 848 179 261 915 075.

Этим не исчерпываются изумительные свойства чисел Фибоначчи. Разделим каждое из них на следующее за ним. Начиная с 3, будем получать 0,625. После 89 ответ будет 0,618; с увеличением чисел в ответе будет возрастать лишь число десятичных знаков после запятой[9]. Разделим теперь каждое число, начиная с 2, на предыдущее. Будем получать 1,6. После 144 ответ будет всегда 1,618.

Греки знали это соотношение и называли его золотой пропорцией. Эта величина определяет пропорции Пантеона, игральных карт и кредитных карточек и здания Генеральной Ассамблеи Организации Объединенных Наций в Нью-Йорке. Горизонтальная перекладина большинства христианских крестов делит вертикальную в том же отношении: длина над перекладиной составляет 61,8 % от длины под пересечением. Золотая пропорция обнаруживается также в природных явлениях – в цветочных лепестках, в листьях артишока, в черешках пальмовых листьев. Отношение длины части тела человека выше пупка к длине части ниже пупка у нормально сложенного человека равно 0,618. Длина фаланг пальцев, если последовательно идти от кончиков до ладони, соотносится так же[10].

Одним из наиболее романтичных воплощений отношения Фибоначчи являются пропорции и форма чудесной спирали. На приведенном рисунке видно, как она формируется на основе ряда квадратов, длины сторон которых определяются рядом Фибоначчи. Процесс начинается с построения двух маленьких квадратов одинакового размера. На основе двух их сторон строится примыкающий к ним квадрат со стороной удвоенного размера, затем квадраты со сторонами утроенного, упятеренного и т. д. размера. Заметьте, что таким образом строится последовательность прямоугольников, причем отношения между сторонами следующих друг за другом членов последовательности образуют золотую пропорцию. Затем соединяем противоположные углы квадратов, начиная с наименьшего, дугами, являющимися продолжением друг друга, и получаем спираль.

Перейти на страницу:

Похожие книги

1С: Бухгалтерия 8 с нуля
1С: Бухгалтерия 8 с нуля

Книга содержит полное описание приемов и методов работы с программой 1С:Бухгалтерия 8. Рассматривается автоматизация всех основных участков бухгалтерии: учет наличных и безналичных денежных средств, основных средств и НМА, прихода и расхода товарно-материальных ценностей, зарплаты, производства. Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, проводить их по учету, формировать разнообразные отчеты, выводить данные на печать, настраивать программу и использовать ее сервисные функции. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов.Для широкого круга пользователей.

Алексей Анатольевич Гладкий

Программирование, программы, базы данных / Программное обеспечение / Бухучет и аудит / Финансы и бизнес / Книги по IT / Словари и Энциклопедии
10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес
111 способов повысить продажи без увеличения затрат
111 способов повысить продажи без увеличения затрат

В любом бизнесе всегда можно сделать что-то еще для увеличения продаж, ведь ни одна компания не использует все возможные и подходящие ее специфике методы маркетинга. Например, средний магазин «Walmart» (крупнейшая сеть дисконт-супермаркетов в мире) использует порядка 500 способов (ошибки в нолях нет) привлечения клиентов и увеличения продаж. А чем вы хуже? «Под ногами» лежит больше денег, чем бизнес зарабатывает в данный момент. Нужно только наклониться, чтобы их поднять. Продажи компании можно легко увеличить относительно простыми и малозатратными или вовсе бесплатными способами. Именно такие способы приводятся в этой книге. Читайте и внедряйте новые для вас методы, иначе это сделают ваши конкуренты, а вы будете в роли догоняющих!

Айнур Сафин

Маркетинг, PR / Маркетинг, PR, реклама / Финансы и бизнес