А вот по части поздней защиты землекопу, наоборот, было бы чему поучиться у человека. Здесь наши клетки застрахованы лучше, чем у мелких млекопитающих. И для этого у нас работает система укорачивающихся теломер.
О теломерах в контексте старения заговорили[518]
после 1973 года, когда российский молекулярный биолог Алексей Оловников выдвинул теорию маргинотомии (дословно "отсечения концов"). Он предположил, что предел Хейфлика (остановка клеточного цикла после 50 делений) объясняется тем, что концевые участки хромосом – теломеры – исчезают, при этом "обнажая" следующие за ними жизненно важные гены. И когда те повреждаются, клетка гибнет. Он же и предложил считать этот процесс причиной старения, положив начало теломерной теории старения.Позже, правда, сам Оловников отошел от своих представлений, предпочтя им новый вариант[519]
: старение как укорочение небольших молекул ДНК, отдельных от хромосом. Ответственными за старение в его новой теории стали гормональные колебания, вызванные изменениями гравитации под влиянием Луны, а воспринимает организм эти изменения, по мнению Оловникова, с помощью специальной луносенсорной системы (в которую входит эпифиз – шишковидная железа головного мозга, ответственная за биологические ритмы). У этой экстравагантной гипотезы, в отличие от теломерной теории, последователей пока не нашлось, хотя о роли биоритмов в процессе старения в последнее время говорят все больше, и мы тоже поговорим в последней главе.Но в некоторых случаях укорочение теломер невозможно: если бы хромосомы только и делали, что укорачивались, то каждому следующему поколению животных доставались бы все более короткие теломеры. Оловников предположил, что в половых клетках должен работать фермент, способный копировать ДНК без потери теломер. Десять с лишним лет спустя Элизабет Блэкберн и Кэрол Грайдер обнаружили, что такой фермент действительно существует, и назвали его теломеразой. Правда, работает она по-другому: она не копирует всю хромосому целиком, а занимается только восстановлением концов. Это сделать несложно, поскольку все теломеры состоят из "шестибуквенной" последовательности ТТАГГГ, повторенной более тысячи раз. Теломераза приносит "с собой" нить РНК – шаблон, по которому она может восстановить нужную последовательность. Она "прикладывает" шаблон к концу ДНК и достраивает одну из цепей, а вторую восполняет уже обычная клеточная полимераза. И теоретически ничто не мешает клетке, в которой работает теломераза, жить вечно.
Тем не менее в большинстве наших клеток спасительный механизм восстановления хромосом выключен. Теломеразу постоянно производят лишь половые клетки и, в меньшем количестве, стволовые. Остальные же никак не могут сохранить свои теломеры целыми. Это и спасает их от превращения в опухоль. Представим себе клетку, в которой мутировал какой-нибудь протоонкоген. Она начинает размножаться и постепенно лишается теломер. Обычно на конце хромосом теломерная ДНК образует петлю, с которой связано множество белков. По мере укорочения теломер петля становится короче, белкам не хватает на ней места и они выходят из ядра в цитоплазму клетки, где активируют р53. Кроме того, как только белки перестают защищать конец хромосомы, его распознает[520]
система репарации ДНК, принимает его за двунитевой разрыв посередине хромосомы и начинает бить тревогу, опять же стимулируя работу р53 – начинается репликативное старение, и клетка перестает размножаться, как бы активен ни был онкоген внутри нее.Все три типа старения – стресс-индуцированное, онкоген- индуцированное и репликативное – сходятся к одним и тем же сигнальным клеточным путям, поэтому итог оказывается неизменным вне зависимости от причины. Более того, эти три механизма тесно переплетены друг с другом: высокая концентрация активных форм кислорода не только вызывает повреждения в ДНК, запуская р53 (стресс-индуцированный путь), но еще и активирует р16 (онкоген-индуцированный путь). В то же время окислительный стресс бьет по теломерам, повреждая их дополнительно. А мутации в остальных частях генома активируют систему репарации, которая добирается и до концов ДНК, невзирая на белковую защиту.
Вероятно, поэтому у сенесцентной клетки укорачиваются теломеры вне зависимости от того, как она постарела. И именно поэтому теломеры можно считать показателем старения человека, не разбираясь в том, почему оно произошло. Например, в своих поздних работах Элизабет Блэкберн подсчитала, что жертвы домашнего насилия несут[521]
укороченные теломеры, а осознанная медитация, напротив, их удлиняет[522]. И в этом нет ничего удивительного: коль скоро психологический стресс зачастую связан с воспалением, а воспаление вызывает в клетках окислительный стресс, можно представить себе, что насилие влияет на длину теломер. Другое дело, что, поскольку никакого официального описания "осознанной медитации" не существует, не вполне ясно, насколько этим данным можно верить.