Видение жизни как самоорганизующейся системы совпадает с идеей о том, что живые существа являются диссипативными системами. Живое существо — это структура, которая поддерживает свою энтропию постоянной, создавая энтропию вокруг себя, что означает, что такое существо должно потреблять энергию и как можно эффективнее рассеивать ее. Живые существа представляют собой систему в метастабильном состоянии: несмотря на то что они находятся вне равновесия, они способны поддерживать это состояние, пока система не сталкивается со слишком большими нарушениями, и в этом случае живое существо переходит в состояние стабильного равновесия, то есть смерти. Исследования Кауффмана подчеркнули возрастающую сложность автокаталитических процессов, которую можно объяснить тем фактом, что диссипативные системы стремятся к внутреннему упорядочению, выводя хаос за пределы системы.
Самоорганизующиеся системы могут включать как живые существа, так и инертные части. Пример этого — поведение колонии муравьев или термитов. Как объясняет Пригожин в своей книге «Порядок из хаоса», термиты при строительстве термитника ведут себя так же, как молекулы в химической диссипативной системе.
Он пишет:
«Первая стадия строительной активности (закладка основания), как показал Грассе, является результатом внешне беспорядочного поведения термитов. На этой стадии они приносят и беспорядочно разбрасывают комочки земли, но каждый комочек пропитывают гормоном, привлекающим других термитов.
[…] Начальной «флуктуацией» является несколько большая концентрация комочков земли, которая рано или поздно возникнет в какой-то точке области обитания термитов. Возросшая плотность термитов в окрестности этой точки, привлеченных несколько большей концентрацией гормона, приводит к нарастанию флуктуации. Поскольку число термитов в окрестности точки увеличивается, постольку вероятность сбрасывания ими комочков земли в этой окрестности возрастает, что, в свою очередь, приводит к увеличению концентрации гормона-аттрактанта. Так воздвигаются «опоры».
Как видно, описание соответствует развитию динамической системы, которая переходит от гомогенного состояния в негомогенное, в котором исходные нестабильности приобретают все большее значение и в конце концов полностью определяют развитие системы. Имеется и другой случай спонтанного нарушения симметрии: начальная территория одинакова везде, но в результате деятельности термитов случайно выбираются те ее части, которые скрывают начальную симметрию состояния.
Другой пример самоорганизующейся системы представляют собой коллективные амебы, одноклеточные животные, образующие сложные структуры при недостатке пищи. Амебы ведут себя как автономные существа, пока им хватает пищи, но как только наблюдается ее недостаток, одна из амеб начинает выделять определенное вещество, запускающее цепную реакцию: остальные амебы движутся к ней, образуя конгломерат, который начинает развиваться. Пригожин пишет:
«Сформировавшаяся колония мигрирует до тех пор, пока не обнаружит участок среды с условиями, пригодными для образования плодового тела. Тогда масса клеток начинает дифференцироваться, образуя стебель, несущий на конце мириады спор».
Самоорганизующиеся системы не только существуют в природе, но и являются важной частью наших технологических достижений. Один из примеров — нейронные сети, которые используются сегодня в различных сферах, от распознавания голоса до обнаружения лиц на фотографиях.
Нейронная сеть — это компьютерная программа, имитирующая структуру мозга. Она состоит из различных слоев нейронов, которые получают и передают импульсы. Поведение нейронов основано на реальном поведении нейронов мозга, хотя и в упрощенном виде.