Читаем Путешествие от частицы до Вселенной. Математика газовой динамики полностью

Простой пример клеточного автомата — это игра «Жизнь», созданная английским математиком Джоном Хортоном Конвеем (1937). В ней берется двумерная бесконечная решетка. Каждая ячейка на этой поверхности может быть «живой» (черной) или «мертвой» (белой). Начинается игра с произвольной конфигурации клеток.



Начальное состояние игры «Жизнь». Конкретно для этого состояния характерно поведение, напоминающее периодически стреляющий пистолет.


Затем система начинает развиваться на основании одного и того же правила. Правила просты.

1. Если с живой клеткой граничат меньше двух живых клеток, она умирает.

2. Живая клетка, с которой граничат две или три живые клетки, выживает.

3. Живая клетка, граничащая с более чем тремя живыми клетками, умирает.

4. Мертвая клетка, граничащая с тремя живыми клетками, оживает.

Если взять приведенное начальное состояние, мы увидим следующее развитие.



Последовательные состояния игры «Жизнь», слева направо, сверху вниз.


Игру Конвея можно считать динамической системой. Существует определенное положение в фазовом пространстве — конфигурация системы, которая работает по установленным правилам. Следовательно, если рассматривать другие динамические системы, одни начальные условия приведут систему к неподвижным точкам, после которых развитие остановится; другие — к предельным циклам, когда одно и то же поведение будет периодически повторяться. Наконец, третьи начальные условия приведут систему к странным аттракторам, и она начнет демонстрировать непредсказуемое и хаотичное поведение.

Так, все эти конфигурации из двух, трех и четырех клеток ведут к аттрактору в виде неподвижной точки.



Эти конфигурации, наоборот, порождают повторяющиеся предельные циклы.



В целом поведение игры «Жизнь» хаотично: при изменении начального состояния хотя бы одной клетки мы получим абсолютно разные результаты.

Возникновение произвольных сложных конфигураций в игре Конвея доказывает, что самоорганизация — нередкое явление, не связанное с большой сложностью системы: она может опираться на самые простые законы и не требовать вмешательства человека. Подобный подход совпадает с видением мира как физической системы, управляемой конечным набором простых законов, которые, несмотря на свою простоту, делают возможным существование таких сложных существ, как люди.

* * *

ИГРА «ЖИЗНЬ» КАК КОМПЬЮТЕР

Игра «Жизнь» так разнообразна, что ею можно пользоваться как персональным компьютером. Если взять достаточно большую доску, можно рассматривать ячейки в качестве битов и логических схем — двух базовых элементов для создания процессора, с помощью которых можно написать любую компьютерную программу. Это означает, что при достаточно большом размере решётки игры «Жизнь» можно выполнить любой алгоритм, написанный для персонального компьютера. Например, уже существуют программы, которые вычисляют простые числа, пользуясь исключительно игрой «Жизнь». Конечно, это не очень практичное использование игры, но оно хорошо иллюстрирует то, как на основе ограниченного перечня простых правил можно создать действительно сложную конфигурацию.

* * *

Английский физик и разработчикСтивен Вольфрам (1959) посвятил значительную часть своей жизни изучению клеточных автоматов. Полученные им заключения показывают, что простые правила лежат в основе достаточной высокой сложности результата. Вольфрам сегодня работает над выведением физических законов с помощью клеточных автоматов: ему уже удалось получить модели, совместимые с релятивизмом и квантовой механикой.

Одно из самых важных достижений Вольфрама заключается в том, что его клеточный автомат, называемый правило 110, является тъюринг-полным. Система называется тьюринг-полной, если она способна выполнять любую операцию, подвластную машине Тьюринга, которую можно считать примером идеального компьютера с бесконечными вычислительными возможностями и памятью. Машина Тьюринга может использоваться для вычисления любой математической функции.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика