Читаем Рассказ предка полностью

Почему различные гены бегут с различными скоростями? Что отличает «гранитные» гены от «радиевых» генов? Вспомните, что нейтральные не означает бесполезные, это означает одинаково хорошие. Гранитные гены и гены радия – оба полезны. Просто радиевые гены могут изменяться во многих местах на своем протяжении и все еще быть полезными. Из-за способа работы гена, участки на его протяжении могут изменяться безнаказанно, не затрагивая его функций. Другие части того же гена очень чувствительны к мутации, и его функции нарушаются, если эти части поражены мутацией. Возможно, у всех генов есть гранитная часть, которая не должна сильно изменяться, если ген должен продолжать работать, и радиевые части, которые могут переключаться беспрепятственно, пока гранитная часть не затронута. Возможно, у гена цитохрома-С есть смесь гранитных и радиевых кусочков; у генов фибринопептида – более высокая доля радиевых кусочков, в то время как у генов гистона – более высокая доля гранитных кусочков. Есть некоторые проблемы, или, по крайней мере, затруднения с тем, как объяснить различия в скорости тиканья между генами. Но вся суть для нас в том, что скорости тиканья действительно варьируют от гена к гену, в то время как скорость для любого конкретного гена является довольно постоянной даже у очень отдаленных видов.

Однако не совсем постоянной, и это приносит нам следующую проблему, которая является серьезной. Скорости тиканья не просто неопределенны и нестабильны. Для любого конкретного гена они могут быть систематически больше у некоторых видов существ, чем у других, и это вносит реальную погрешность. У бактерий намного менее эффективная система репарации ДНК, чем сложное «исправление ошибок» нашей ДНК, таким образом, их гены видоизменяются с более высокой скоростью, и их молекулярные часы тикают быстрее. У грызунов также немного неряшливые репаративные ферменты, чем объясняется, почему молекулярная эволюция быстрее у грызунов, чем у других млекопитающих. Главные изменения в эволюции, как внесенные «сгоряча», имеют возможность изменять скорость мутации, что могло бы причинить вред нашими оценками дат ветвления. Сейчас развиваются сложные методы, которые могут учесть изменяющиеся скорости мутации в различных линиях, но они находятся в стадии становления.

Еще более тревожно, что время размножения, казалось бы, предполагает максимальную возможность для мутации. Таким образом, виды с короткими циклами жизни, такие как плодовые мушки, ускоряют мутации до более высокой нормы за миллион лет, чем, скажем, слоны с их длинными интервалами между поколениями. Это предполагало бы, что молекулярные часы могли бы быть рассчитанными в поколениях, а не в реальном времени. Фактически, однако, когда молекулярные биологи изучили скорости изменений в последовательностях, используя линии, у которых оказались хорошие летописи окаменелостей для калибровки, они этого не обнаружили. Казалось, действительно молекулярные часы измеряли время в годах, а не в поколениях. Это было мило, но как это объяснить?

Одно предположение заключалось в том, что, даже притом, что репродуктивное обновление у слонов медленнее по сравнению с плодовыми мушками, в течение всех лет между репродуктивными событиями гены слона подвергались той же бомбардировке космических лучей и другим событиям, которые могут вызвать мутацию, что и гены плодовой мушки. По общему признанию, гены плодовой мушки перескакивают в новую муху однажды за две недели, но почему космические лучи должны заботиться об этом? Что ж, гены, находящиеся в одном слоне в течение десяти лет, поражаются тем же числом космических лучей, что и гены, перескакивающие через ряд из 250 плодовых мушек за тот же период. В этой теории, может быть, что-то есть, но это, вероятно, недостаточное объяснение. Действительно верно, что большинство мутаций происходит тогда, когда создается новое поколение, таким образом, мы, кажется, нуждаемся в другом объяснении очевидной способности молекулярных часов указывать время в годах, а не в поколениях.

Здесь коллега Кимуры, Томоко Охта, сделала разумное дополнение: свою почти нейтральную теорию. Кимура, как я сказал, вычислила из своей полностью нейтральной теории, что скорость фиксации нейтральных генов должна равняться скорости мутации. Это замечательно простое заключение зависело от изящной части алгебраического «уравнивания». И количество, которое уравнивалось, было размером популяции. Размер популяции входит в уравнение, но он оказывается и в числителе, и в знаменателе, таким образом, он удобно исчезает в клубах математического дыма, и скорость фиксации выходит равной скорости мутации. Но только если рассматриваемые гены действительно полностью нейтральны. Охта повторила алгебру Кимуры, но она позволила своим мутациям быть почти нейтральными вместо полностью нейтральных. И это решило исход дела. Размер популяции больше не уравновешивался.

Перейти на страницу:

Похожие книги