Полученная довольно сложная и несколько неровно заполненная таблица сообщает много сведений. Прежде всего, в структуре таблицы отобразились те общие содержательные установки, которые Лосев фиксирует относительно «музыкального предмета»: музыка
, если изъясняться в кратчайшей форме, есть жизнь числа, которое диалектически переходит во время и фактически воплощается в музыкальном движении 43. Такая непрерывная трансформация «музыкального предмета» действительно сложна, изобразить ее действительно непросто, о чем свидетельствуют, должны мы заметить далее, ряд специфических мест таблицы (язык не поворачивается сказать — огрехов). Во-первых, 10 строк нашей таблицы остались не заполнены, для соответствующих пентадных кодов у Лосева не отыскалось содержательных интерпретаций. Во-вторых, 5 категорий в группе выражения числа (отмечены звездочками) содержат один новый момент, с которым нам ранее еще не приходилось сталкиваться: здесь Лосев применил особое, внутричисловое становление и тем самым еще более размыл и без того весьма зыбкие границы между выражением числа и выражением времени. Учет еще и такого варианта выразительности — его можно резервировать на будущее, а здесь зафиксировать как еще один, уже третий тип «логического ударения» — значительно расширяет общую оценку размеров сферы Выражения (это важно и для подсчетов границ «информационной вселенной»). В-третьих, при рассмотрении массивности звука (в модификациях его веса, объемности и плотности) Лосев посчитал нужным перейти от рассмотрения выражений числа как такового (еППср) к выражениям числа как потенции (еппср). Затрудняясь объяснить этот ход, мы просто фиксируем его здесь, а в Таблице 4 «для порядка» убрана соответствующая нумерация.Другой пример обследования сферы Выражения, уже не столь обширный, можно почерпнуть из книги «Античный космос и современная наука». Здесь намечен ряд категорий, получающихся при выражении пространства
(еппСР), в частности даны категориально-выразительные дефиниции точки, линии, угла, кривой и окружности 44. Более подробно и со многими важными разъяснениями эта же пространственная часть сферы Выражения обследована в работе «Диалектические основы математики» 45.
7. Заключение
Проделанная нами работа, которую нужно рассматривать не более чем как введение
в периодическую систему начал по Лосеву, не затронула многого. Скажем, нужно иметь в виду принципиальную важность для мыслителя проблемы символа и мифа (понимаемых, разумеется, по-лосевски, т. е. данных в строгом категориальном наполнении), потому в ряде работ «восьмикнижия» тетрактида и производные от нее получали еще особую символическую и, для «старших» начал, мифологическую модуляцию. Очень интересна в логическом отношении — хотя и не только в логическом — трехмерная (или абсолютная) диалектика, которую Лосев развивал в одном фрагменте, вероятно, относящемся к работе «Дополнение к „Диалектике мифа“». Весьма неожиданную и многообещающую (в плане возможного системостроительства) «саморефлексию» тетрактиды на пентаду Лосев наметил в довольно поздней работе «Логическая теория числа» 46 и др. Эти темы, несомненно, заслуживают отдельного и заинтересованного рассмотрения.Однако уже и предложенных материалов, как представляется, вполне достаточно для непредубежденного читателя, чтобы он обнаружил в трудах Лосева немало важных и волнующих проблем
, а также, быть может, и долгожданные ответы на некоторые из тех вопросов, которые жизнь уже поставила, никого не спросясь.
3.7. Гипотеза о типах бесконечности
Прежде чем говорить о возможных типах бесконечности, уточним, какая вообще точка зрения на бесконечность и ее место в мире нами используется и отчасти будет развиваться в дальнейшем. Этот важный вопрос — точное указание исходной позиции исследователя — в свое время немало занимал как Г. Кантора, создателя математического учения о бесконечности, так и П.А. Флоренского, автора едва ли не первого в России изложения канторовской теории множеств. Ниже мы воспользуемся некоторыми материалами одной из давних работ последнего.