Читаем Разыскания о жизни и творчестве А.Ф. Лосева полностью

У Кантора было много противников и оппонентов, доставалось ему с разных сторон, но мы особенно выделим ту группу мыслителей, что сосредоточились преимущественно в России. Основной их упрек состоял как раз в недопонимании Кантором диалектики множеств, в односторонности его подхода. Перекос, который укоренился уже в базовом термине канторовской теории, можно исправить, утверждалось представителями этой критической традиции, если вместо недиалектичного множества как многого научиться представлять комплекс единое-многое (П.А. Флоренский) или единство единства и множественности (С.Л. Франк), или сказать то же в более развернутой форме — единичность подвижного покоя самотождественного различия (дефиниция А.Ф. Лосева в 20-е годы) или единораздельную цельность (его же дефиниция начиная с 60-х годов). Сравнительно недавно было выдвинуто также следующее обобщение, формально — во всяком случае, на уровне отсылок к предшественникам — не связанное с указанной традицией, но объективно к ней примыкающее: теория множеств, как утверждается, рассматривает многое, мыслимое как целое, тогда как современный системный подход склонен обнаруживать целое, мыслимое как многое (Ю.А. Шрейдер) 5. Правда, мы здесь не будем придерживаться подобного противопоставления множеств и систем, поскольку оно представляется нам достаточно искусственным. Но, с другой стороны, как раз последние формулировки доставляют весьма наглядный пример и образец удобного языка, заново (на новом материале) переоткрытого современным исследователем спустя примерно полвека после того, как тот же А.Ф. Лосев без устали жонглировал своими «подвижными покоями» и «самотождественными различиями», занимаясь диалектическим переосмыслением идеи множества. Выразительные возможности этого языка — для большей определенности назовем его языком бинарных форм, и название станет ясно из дальнейшего, — мы и попробуем по-своему использовать для сжатого описания диалектики множеств (начиная, следуя традиции, с аспектов многое как целое и целое как многое) с тем, чтобы одновременно и без особого промедления получить типологию бесконечности. На этом пути уже сама наша тема властно потребует также рассмотреть аспекты малое как целое и, конечно, целое как малое.

Перечислим сначала подходы к бесконечности (целому) как многому, т. е. рассмотрим их на базе бинарной формы целое многое (для краткости и без ущерба для смысла уберем «как» в наших формах), а именно:

a) целое многое — бесконечность, в которой представлена только сторона неограниченного роста, умножения, увеличения, известная в истории мысли под названием потенциальной бесконечности; подчеркнем (для примера и потому только в этом эпизоде повествования) момент технического порядка в разъяснение принятой здесь и далее системы нотации — говоря о данном типе бесконечности, мы делаем упор («логическое ударение», по выражению Лосева) на втором члене нашей бинарной формы;

b) целое многое — бесконечность, при всей ее неограниченности в смысле (а) рассмотренная именно как нечто цельное, как определенно данное, т. е. актуальная бесконечность; заметим, что в принятых у нас обозначениях наглядно зафиксировано известное наблюдение К. Гутберлета о тесной связи потенциальной и актуальной бесконечности 6 — здесь два вида бесконечности предстают как разные аспекты одного и того же объекта;

c) попеременная комбинация представлений о бесконечности в понимании (а) и понимании (b) — именно этим приемом воспользовался Кантор в своем учении о бесконечной (точнее, потенциально бесконечной) иерархии актуальных бесконечностей ?i; из нашей системы обозначений данная комбинация «выпадает», поскольку она не является логически последовательной (Лосев сказал бы, наверное, что она не имеет диалектически законченного вида), ибо ниоткуда не следует, например, что вся иерархия бесконечностей не может быть актуальна, завершена, финальна;

d) целое многое — тип бесконечности при диалектическом объединении понимания (а) и понимания (b), когда в отличие от предыдущего случая (с), иерархия актуальных бесконечностей здесь замыкается (ограничивается сверху) абсолютом ?; к утверждению такой возможности в пору кризиса теории множеств пришел и Кантор, явно через силу и с пересмотром своих прежних убеждений — но вполне в духе диалектической антиномики, — заговоривший в переписке с Дедекиндом о т. н. неконсистентных системах, т. е. множествах, не являющихся единствами 7.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже