Познавательная автоматика способна дополнить и расширить некоторые задачи рекрутеров. Так, компания Unilever использует искусственный интеллект, отбирая претендентов в Facebook и других социальных сетях. Соискатели, кликая на рекламное объявление, посылают отклик на вакансию через свой профиль в сети LinkedIn. Unilever получает сотни тысяч таких заявлений от желающих получить работу. Раньше сотрудники кадровой службы просматривали каждое резюме, отделяя достаточно квалифицированных претендентов от тех, кто не обладает нужными навыками и умениями. Теперь же в Unilever задействовали специально созданный алгоритм, анализирующий информацию о квалификации соискателя и отбирая тех, чей профессиональный уровень удовлетворяет необходимым требованиям. Далее кандидаты должны пройти автоматическое тестирование, в которое входят онлайн-игры, ответы на вопросы и запись видео. Искусственный интеллект, следуя заданным параметрам, анализирует всю полученную информацию и выставляет оценку каждому претенденту, определяя тех, кому будет предложено лично явиться на собеседование. По словам представителей Unilever[32]
, после интервью предложение о работе получают около 80 % соискателей, отобранных программой, тогда как до ее внедрения этот показатель составлял лишь 63 %.Методика, применяемая в Unilever, сходна с той, которую используют банки в помощь кредитным аналитикам. Программа фактически проводит «аудит» соискателя. Подобные системы отбора, основанные на искусственном интеллекте, избавляют рекрутеров от выполнения монотонной работы, что уменьшает затраты и снижает количество ошибок.
Такое использование автоматики способствует переосмыслению деятельности менеджера по кадрам, отделяя шаблонные обязанности от работы, более соответствующей квалификации специалистов, – проведения собеседований. После того как программа быстро и непредвзято оценит основные навыки претендентов, люди смогут сосредоточиться на более важных задачах, выполнение которых приносит компании прибыль. Кроме того, теперь, когда автоматика заменила человека в выполнении шаблонных задач, рекрутеры сумеют уделить больше внимания созданию комфортной атмосферы для многообещающих кандидатов на значимые позиции, помогая им снизить уровень стресса, традиционно возникающего в подобных обстоятельствах, и пройти через процедуру оформления. У них появится время для того, чтобы подробно отвечать на вопросы претендентов, а также решать проблемы, возникающие по ходу дела, помогая им осваиваться на новом месте.
Бывает и так, что познавательная автоматика расширяет поле деятельности человека, взаимодействуя с ним напрямую. Система инвестиционного анализа компании Kensho Technologies предоставляет инвестиционным менеджерам возможность задавать ей устные вопросы на английском языке и в течение нескольких секунд дает ответы на них. Вопрос может звучать, например, так: «Какие отрасли и сектора показывали наилучшие результаты в течение трех месяцев до поднятия процентных ставок и в течение трех месяцев после этого?» Таким образом, искусственный интеллект превратился в настоящего советника, с которым можно поговорить. С его помощью инвестиционные менеджеры, анализирующие различные сценарии будущего, работают быстрее, а финансовые результаты компании стали заметно выше.
Оба примера касаются шаблонных умственных задач, выполняемых специалистом в одиночку и относящихся к той части графика ПУРР, которая описывает плавное увеличение показателя ценности. Познавательная автоматика заменяет человека или расширяет его возможности, помогая добиться дополнительной ценности за счет более качественной оценки – кандидатов или инвестиций. Автоматика способна анализировать больший объем информации, делая это более качественно и объективно. Кроме того, как мы убедились, она дает возможность переключить сотрудников на выполнение задач, более прибыльных для организации.
Стандартная умственная работа, требующая взаимодействия (быстро растущая ценность): расширение функционала с помощью познавательной автоматики