Компьютерное картографирование, независимо от конкретной интерполяционной процедуры, всегда представляет собой создание цифровой модели карты. Значения цифровой модели (ЦМ) картографируемого признака рассчитываются для узлов регулярной сетки ЦМ по эмпирическим значениям признака в опорных точках — генетически изученных популяциях. Выражение «опорные точки» — не образ, а конкретный термин, поскольку исходные значения признака в изученных популяциях действительно служат опорой изображенной на карте поверхности распределения признака: поверхность как бы сетью «натянута» на ординаты значений картографируемого признака в этих точках, преобразуя несвязно разбросанные опоры в изгибы, вершины и впадины генетического рельефа. В узлах регулярной сети ЦМ находятся значения картографируемого признака, рассчитанные с помощью интерполяционной процедуры: ортогональных полиномов на основе информации обо всех исходных генетически изученных популяциях в пределах заданного радиуса. При расчёте полинома значение признака в каждой популяции берется с весом, обратным расстоянию от популяции до узла сетки; по совокупности всех изученных популяций рассчитывается среднее значение в каждом узле сетки; в результате проведёния этой процедуры для каждого узла создается ЦМ карты [Сербенюк и др., 1990, 1991; Берлянт и др. 1991а, б; Koshel et al., 1991; Koshel, Musin, 1991, 1994; Koshel, 1992; Berlyant et al., 1992]. Таким образом расчёт ортогональных полиномов проводится согласно [Сербенюк и др., 1990].
где х, у
— декартовы координаты узла сетки; z — частота признака;убывающая функция от расстояния (весовая функция);
Для такой функции выполняется условие интерполяции
Применялось предложенное [Сербенюк и др., 1990] обобщение этого метода:
где
Например, для создания ЦМ карт русского генофонда, пространство карты было покрыто густой равномерной сетью, состоящей из 9000 узлов. Для каждого узла сетки с помощью интерполяционной процедуры рассчитано значение частоты гена: в расчёт входили все изученные популяции в пределах заданного радиуса, взятые с весом, обратным расстоянию от данного узла сетки до конкретной изученной популяции. В данном случае была использована нулевая степень полинома, шестая степень весовой функции и учитывалась информация об исходных популяциях в радиусе 2000 км от данного узла сетки. Такой расчёт проводился независимо для каждого узла сетки. Это означает, что для каждого из 9000 узлов сетки учитывались почти одни и те же изученные популяции, но расстояния до каждой популяции и, следовательно, её «вес» при определении частоты гена в данном узле сетки — менялись. Еще раз подчеркнём, что рассчитанные значения в каких-либо узлах сетки никак не влияют на определение частоты гена в других её узлах. И поэтому все равно, с какой именно точки начнётся построение карты.
После того, как для каждого узла сетки получен независимый прогноз частоты гена, можно считать, что цифровая модель (ЦМ) карты создана: у нас имеется двумерная матрица, в каждой ячейке которой (для каждого узла равномерной сетки) хранится прогнозируемое значение признака. Далее с ЦМ (как с обычными матрицами) проводим все дальнейшие преобразования и статистические расчёты — корреляций, трендов, расстояний, главных компонент, — получая количественные оценки связей и закономерностей. При этом карта становится не иллюстрацией, а математической моделью пространственной изменчивости. Она служит инструментом количественного анализа генофонда: то есть становится не «графическим», а «алгебраическим» объектом.
Возникает закономерный вопрос: как меняются статистические характеристики (средняя частота признака, дисперсия и т. д.) в результате картографирования? Иными словами, насколько и как различаются характеристики опорных точек и ЦМ карты, созданной на их основе? Ответ на этот вопрос подробно рассмотрен в
КАК ЗАВИСИТ КАРТА ОТ ПАРАМЕТРОВ ЕЕ ИНТЕРПОЛЯЦИИ?