Читаем Русский генофонд на Русской равнине полностью

Новая характеристика «надёжность карты» количественно характеризует степень устойчивости анализируемых значений картографической модели. Надёжность измеряется вероятностью осуществления прогноза карты в каждой её точке и оценивает статистическую достоверность каждого картографированного значения.

Любая геногеографическая карта предлагает модель распространения признака (например, частоты гена) в географическом пространстве. Поскольку любое значение карты, полученное в результате интерполяционной процедуры картографического моделирования, является прогнозом, важно оценить, какова надёжность такого прогноза, какова вероятность его осуществления. Оценка надёжности дает ответ на вопрос: если в данной (любой) точке пространства провести изучение генофонда, то какова вероятность получить значение частоты гена, достаточно близкое к прогнозу, показанному на его карте?

Надёжность карты в разных частях её пространства может значительно различаться, например, из-за неравномерного распределения на карте исходной информации. На нее накладывается и неравномерность их изученности, и неравная их значимость для карты (популяции в регионах с мощными эффектами дрейфа генов дают менее надёжный прогноз, чем популяции с большой численностью и интенсивным генным обменом). Результатом такой множественной неравномерности является и неравномерная надёжность любой геногеографической карты, при чтении которой всегда возникает вопрос: насколько надёжен прогноз в той или иной точке её пространства? Ответ на такой вопрос могут дать только карты надёжности, на которых для всех точек того же самого картографируемого ареала приведены комплексные оценки надёжности (вероятности правильности картографического прогноза). Совместный анализ геногеографической карты признака и карты её надёжности позволяет по-разному относиться к значениям в надёжных и ненадёжных областях карты и давать корректную интерпретацию пространственной изменчивости изучаемого признака.

Карты надёжности создаются, исходя из основных положений математической теории надёжности. В биологических науках также используются приложения этой теории — при изучении экологических систем, генетических систем, клеток, клеточных популяций и тканей, процессов старения, репарации и др. При этом теория надёжности «рассматривается как важный эвристический метод исследования биологических объектов. Подобный подход возможен на любом уровне интеграции» [Кутлахмедов, 1985, стр. 7].

Из теории надёжности в геногеографию вводятся два понятия: уровень строгости (достоверности) а и вероятность прогноза Р [Нурбаев, Балановская, 1997, 1998; Балановская, Нурбаев, 1999].

1) УРОВЕНЬ СТРОГОСТИ (α). Уровень строгости служит постоянным коэффициентом при интегрировании дифференциального уравнения, описывающего надёжность анализируемой системы. Он задаётся в соответствии с требованиями надёжности к данной системе. Уровень строгости (обычно от α=0.3 до α=0.7) исследователь выбирается, исходя из требований к степени надёжности результатов, масштаба картографируемой территории, объёма доступной исходной информации.

2) ОЦЕНКА НАДЁЖНОСТИ ПРОГНОЗА В ТЕРМИНАХ ВЕРОЯТНОСТИ (Р). Значение надёжности прогноза является решением дифференциального уравнения надёжности. При любом заданном уровне строгости оценка надёжности (вероятность осуществления прогноза Р) варьирует от Р=0 (абсолютно ненадёжные области) до Р=1 (такой высокой надёжностью прогноза могут обладать лишь исходные популяции). Оценка надёжности меняется при изменении уровня строгости а: те объекты, надёжность которых приближается к максимальной (Р∞1) при уровне строгости α=0.50, при переходе к более высокому уровню строгости α=0.90 будут оценены как менее надёжные (Р<<1).

КАРТЫ НАДЁЖНОСТИ

На картах надёжности интенсивность окраски соответствует степени достоверности картографического прогноза. Первый интервал (белый цвет) соответствует самой низкой оценке надёжности (Р<0.90). Второй интервал (0.90<Р≤0.95) окрашен на черно-белых картах в светло-серые тона — надёжность приближается к достоверной, но не достигает традиционного для биологических исследований требования 95 % уровня вероятности. Третий интервал (0.95<Р≤0.975) — уже удовлетворительная оценка, поскольку вероятность выше 0.95; он окрашен в интенсивно серый цвет. Четвертый интервал (0.975<Р≤0.99), окрашенный в темно-серый цвет, указывает на географическое положение высоко достоверных районов карты. Пятый балл (Р>0.99) соответствует наивысшей оценке надёжности (области исходных популяций) и окрашен на карте в самые интенсивные тона. Таким образом, повышение интенсивности цвета на карте надёжности соответствует увеличению надёжности картографирования.

Перейти на страницу:

Похожие книги