При дальнейшем картографо-статистическом анализе надёжными считаются только те области карты, где вероятность правильного прогноза выше 95 % (Р>0.95):
только эти области распространения данного гена (или другой характеристики генофонда) учитываются при всех видах расчётов — корреляций, главных компонент, гетерозиготности и т. д.КАРТЫ С УЧЕТОМ НАДЁЖНОСТИ
На картах признаков их значения показаны только в «надёжной» зоне, то есть для узлов ЦМ с вероятностью правильного картографического прогноза выше 0.95. В областях с меньшей надёжностью значения признака не приводятся («белые пятна» на карте данного признака).
Итак, «ненадёжные», то есть слабоизученные области, залиты на картах белым цветом и не используются в анализе, а все характеристики карты рассчитываются только по её надёжному пространству [Нурбаев, Балановская, 1997, 1998]. Число узлов карты (N), вошедших в «надёжное пространство» данного гена, указано в легенде каждой карты. Например, для ряда обобщённых карт русского генофонда N=1294. Это означает, что из 9000 узлов карты около 5000 узлов соответствуют ареалу других народов Восточной Европы, Кавказа и Урала, а остальные 2706 узлов русского ареала являются ненадёжными для данной системы признаков.
Таким образом, входными параметрами математической модели надёжности являются исходная геногеографическая карта (размещение опорных точек) и уровень строгости (α
), выбранный для надёжности этой карты. Выходным параметром является вероятность прогноза (Р) значения признака в каждом узле исходной карты. Карты надёжности служат для отбора лишь тех точек картографического пространства, которые удовлетворяют требованиям надёжности.Мы уже говорили о том, что самые простые преобразования карты — это операции с отдельным узлом карты. Их проще всего представить, потому что такие операции проводятся с каждым узлом независимо.
СПЕКТР ПРОСТЫХ ПРЕОБРАЗОВАНИЙ
Статистическая трансформация отдельной карты осуществляется на уровне цифровой модели: с каждым значением матрицы ЦМ
производятся операции, заданные тем или иным алгоритмом. В результате замены всех исходных значений матрицы преобразованными значениями создается новая — результирующая — ЦМ новой карты. К основным операциям по трансформации отдельной карты отнесены следующие: арифметические операции с константой (увеличение или уменьшение значений ЦМ на константу, умножение или деление на нее); возведение значений ЦМ в степень (положительную, отрицательную, целую, дробную); тригонометрические функции; логарифмические функции; перевод в абсолютные значения (взятие по модулю); дополнение до единицы. Эти операции комбинируются в любые сочетания, образуя цепочки многоступенчатых преобразований.Трансформация отдельной карты широко используется при решении различных задач. Обычно такие преобразования являются промежуточными при сложных расчётах, однако они могут иметь и самостоятельное значение, например: при создании карты распределения частоты гена на основе карты альтернативного аллеля путем «вычитания карты» из единицы (1-q);
при создании карты распределения гомозиготного генотипа на основе карты частоты аллеля путем возведения карты в степень (q2); при картографировании гетерозиготности и генетических расстояний двухаллельного локуса на основании карты частоты гена одного из аллелей;для различных нормализующих преобразований карты признака: lg(x), lg(x
Статистическая трансформация совокупности карт проводится путем трансформации их ЦМ.
Все трансформируемые карты обязательно должны быть построены на единой картографической основе и иметь одинаковое число узлов сетки с идентичной географической привязкой. Процедура преобразования состоит в следующем. Последовательно с Rij элементом каждой матрицы ЦМ (где i и j — координаты узла равномерной сетки) осуществляется заданная операция, результат которой после обработки всех исходных ЦМ заносится в соответствующий Rij элемент результирующей ЦМ. После повторения этой процедуры для каждого узла цифровой модели будет получена новая матрица ЦМ — результирующей карты.