В некоторых примерах мы хорошо понимаем конвергентную эволюцию, в деталях, с экспериментальным подкреплением, математическими вычислениями и прочими данными. Джонатан Лосос всю свою профессиональную жизнь изучал ящериц-анолисов, обитающих на Карибах. Его ум, словно котел ведьмы, буквально набит хвостами и лапками ящериц. В результате скрупулезных исследований Лосос смог показать, что, оказавшись на Карибских островах, анолисы с предсказуемостью – или даже с неизбежностью – эволюционируют в три базовые формы. Одни осваивают кроны деревьев, и подошвы их лапок, ставшие волосатыми, приспособлены к тому, чтобы виснуть на толстых ветках. Другие адаптированы к жизни на тонких веточках. Их лапки тоже волосаты, но они короткие, как и хвост. При таком сочетании признаков эти ящерицы не сваливаются с веточек. Третьи же эволюционируют в бегунов по земле: у них длинные лапы и маленькие подушечки на пальцах. Перечисленные формы появились на каждом из четырех крупных Карибских островов независимо друг от друга – и, возможно, не по одному разу. Похоже, если ты карибский анолис, то у тебя не так много способов преуспеть{190}
.А еще, конечно же, бывает, что варианты конвергенции формируются в стремительном темпе под давлением смертельной угрозы, исходящей от человека; я уже упоминал о них. Резистентные бактерии, насекомые, сорняки и грибы развиваются предсказуемым образом. Зачастую предсказуемость здесь объясняется конвергентными свойствами. Так, повторяемость результатов эксперимента Майкла Байма с мегачашкой обусловлена именно конвергенцией. В некоторых случаях конвергенция затрагивает не само появление резистентности или ее защитные механизмы, но даже и сами гены, обеспечивающие эту устойчивость.
Многочисленные примеры конвергентной эволюции позволяют сформулировать некоторые правила жизни, влияющие на то, какие типы биологических форм заново возникнут в будущем. В целом в этих примерах проявляются скорее общие тенденции эволюции, а не тонкости биологического устройства отдельных видов. Впрочем, иногда, прогнозируя будущее, ученые могли верно предсказывать и детали. Например, Ричард Александер, преподаватель Мичиганского университета, давно изучал эволюцию сообществ насекомых – муравьев, пчел, термитов и ос. Во всех этих сообществах размножаются лишь немногие особи: цари и царицы. Особи, которые не размножаются, называются рабочими: они трудятся на благо царя и царицы. Подобные сообщества называются эусоциальными. В эволюционном смысле они стоят особняком. В перспективе эволюции единственной «целью» живых организмов выступает передача своих генов новым поколениям – но тем не менее рабочие муравьи, пчелы, термиты и осы отказываются от этой возможности. Рабочие заботятся о яйцах и новорожденных, добывают пищу, защищают колонию. Но, за исключением редчайших случаев, сами они не размножаются.
Единственная эволюционная выгода отказа от размножения для рабочих состоит в том, что таким образом они повышают успешность генов своих родственников, а гены у них во многом общие. Александер выделил набор особенностей, проявляющихся в ходе развития эусоциальных сообществ, где есть такие рабочие. По его мнению, эти сообщества эволюционируют конвергентно, когда особи, живущие вместе, друг другу родственны, то есть имеют схожие гены. Они эволюционируют, когда источники пищи рассредоточены, причем каждый источник может поддерживать существование более чем одного индивида. Наконец, они эволюционируют в условиях, когда отдельные особи, объединившись, способны успешно защитить свой дом. По крайней мере, так обстоит дело с насекомыми. Например, как я отмечал выше, термиты эволюционировали из тараканов в условиях ограниченного пространства древесных стволов. Принято считать, что в стволах было распространено близкородственное скрещивание (то есть жившие в них особи были генетически схожи), дом и припасы представляли собой одно и то же, а защищать их было легко.