Годами позже (и частично благодаря работам Ферма) Лейбниц и Ньютон независимо пришли к основным идеям анализа: использованию бесконечно малых и основополагающей идее того, что операция вычисления углового коэффициента касательной к кривой, заданной уравнением А, дает в результате уравнение В, а операция нахождения квадратуры кривой В дает в результате уравнение А. Другими словами, нахождение угловых коэффициентов и квадратур, дифференцирование и интегрирование являются обратными операциями, как сложение и вычитание. Это основная теорема анализа.
Как стало возможным, что Ферма не понял, насколько важное открытие находится рядом? Это ужасно досадно. Так же как и рыцарь Персеваль, Ферма увидел Святой Грааль, но не смог узнать его, что лишило его лавров первооткрывателя. В любом случае, великое открытие, которое удалось сделать Лейбницу и Ньютону, — еще один пример чудесных мостов между внешне непохожими проблемами. С подобным, как мы видели, столкнулись Ферма и Декарт при создании аналитической геометрии, а также Танияма, Симура и Уайлс при работе над гипотезой, которая носит имя первых двух.
И здесь мы почти закончили нашу историю.
ГЛАВА 6
Вероятность и принцип Ферма
Вклад Ферма в математику не исчерпывается большими областями, о которых мы говорили до этого момента, — теорией чисел, а также аналитической геометрией и анализом. Наряду с Паскалем он также стоял у истоков теории вероятностей. Свои же последние годы ученый посвятил полемике с Декартом вокруг оптики.
Говорить о "законах случая", на первый взгляд, нелепо. Как случай, который по определению непредсказуем, может иметь законы? Если сегодня, в разгаре XXI века, это понятие кажется нам удивительным, то во времена Ферма оно было невообразимым. Но такие законы существуют, и Ферма сыграл важную роль в их изучении по инициативе Блеза Паскаля.
Как обычно, все началось с одной задачи. Блез Паскаль, отец которого был одним из парижских корреспондентов Ферма, членом кружка Мерсенна, обратился к Ферма в 1654 году. Он напомнил тому о дружбе с его покойным родителем и поставил перед ним задачу. К тому времени Ферма в течение нескольких лет ни с кем не переписывался. Но в 1650-х годах он взялся за науку с новыми силами. Ясно, что этого не могло произойти, если бы он не работал скрыто все это время, хотя смерть Бограна, Декарта, Этьена Паскаля и особенно Мерсенна, а также его профессиональные обязанности, не говоря о чуме и бурном политическом климате Фронды, держали Ферма в глубокой изоляции, которую, наконец, пробило письмо Паскаля.
Паскаль познакомился с неким Антуаном Гомбо, шевалье де Мере, настоящим шулером. На основе эмпирических наблюдений тот вывел некоторые правила того, когда следует и не следует делать ставки. Шевалье поставил перед Паскалем задачу, основанную на так называемой игре очков, в которой человек ставит на то, что сможет получить определенный результат: например, число шесть при бросках игральных костей за N попыток, скажем за восемь, как это было в примере Гомбо.