Читаем Самая сложная задача в мире. Ферма. Великая теорема Ферма полностью

Иллюстрация метода исчерпывания, при котором площадь под кривой находится между большей и меньшей площадями.


Возвращаясь к раннему времени его переписки с Мерсенном и Робервалем, в 1636 году, мы видим, что Ферма был занят трактатом Архимеда о спиралях, в котором тот нашел квадратуру спирали, носящей его имя. Ферма распространил этот метод на другие спирали, например на ту, которую он нашел при решении задачи Галилея, упомянутой нами ранее. Ферма бросил вызов Робервалю, предлагая ему найти квадратуру кубической параболы, графика кубической функции: у3 - kx, которую он рассматривал впервые и которая была очень похожа на параболу. Роберваль ответил сразу же. У него уже был метод, подобный методу Ферма, основанный на теореме о сумме степеней целых чисел, найденной тулузцем в ходе исследований по теории чисел, и старом "методе исчерпывания", изобретенном Евдоксом и примененном Архимедом. Он состоит в том, чтобы определить искомую площадь между двумя суммами (см. рисунок). Одна из этих сумм — сумма прямоугольников, подобных DEFG (описанных), большая, чем реальная площадь под кривой, другая — сумма площадей прямоугольников, подобных HIFG (вписанных), меньшая, чем искомая площадь. Очевидно, что реальная площадь находится между этими двумя суммами. Метод исчерпывания состоял в том, чтобы предложить площадь и обосновать методом двойного доказательства от противного, что она является единственной площадью, величина которой находится между этими двумя суммами; это может быть только реальная площадь.

Метод Ферма и Роберваля не работал для некоторых кривых, как они оба быстро убедились. Казалось, Ферма перестал интересоваться данной темой. Но в 1658 году он практически сразу же ответил на недавнюю работу Уоллиса о квадратурах, распространив собственный трактат, который он явно вынашивал в течение многих лет.

В "Трактате о квадратурах" Ферма показывал, как далеко он зашел. Теперь его метод был применим ко всем гиперболам степени больше двух, которые не поддались ему за 20 лет до этого. Он произвел радикальные изменения. Там, где Архимед (и что присутствовало в ранних методах самого Ферма и Роберваля) искал конечные суммы, Ферма теперь допускал возможность бесконечной суммы прямоугольников на оси абсцисс. Это был единственный способ проанализировать площадь под гиперболой, поскольку альтернатива заключалась не в бесконечном числе прямоугольников, а в конечном числе прямоугольников с бесконечной площадью. Прямоугольник с бесконечной площадью при сложении с другими прямоугольниками дает бесконечную площадь. Наоборот, бесконечное число прямоугольников может в некоторых условиях дать конечную площадь. Но, кроме того, метод Ферма отличался от метода исчерпывания тем существенным обстоятельством, что уже больше не было необходимости определять площадь между двумя суммами. Математик приравнивал верхнюю сторону каждого прямоугольника к очень маленькому отрезку гиперболы. Чем меньше был отрезок, тем точнее было это равенство и, следовательно, площадь под отрезком кривой была ближе к площади соответствующего прямоугольника. Разница тончайшая, но основополагающая.

Она была такой тонкой, что Ферма даже не осознал, насколько важным было изменение. Его понятие приравнивания изменилось: речь уже шла не о том, чтобы приравнять любые конечные величины. Ферма открыл бесконечно малые. Однако он был уверен, что продолжает традицию Архимеда. Ученый не понял, насколько большой концептуальный скачок он сделал, и теперь его греческие учителя, вызывавшие у него восхищение, уже не могли идти за ним по этой неисследованной дороге. Снова, не осознавая этого, Ферма хоронил традицию, которую так уважал. Действительно, квадратура кривых — это операция, которую мы сегодня называем интегрированием, хотя, как и в случае с касательными, Ферма не смог увидеть, что площадь под кривой тоже выражена уравнением.

Иллюстрация метода спрямления кривых Ферма.


СПРЯМЛЕНИЕ

Если "квадрировать" означает найти площадь прямоугольника, равную площади другой фигуры, образованной кривой, то "спрямить" означает найти прямую линию, по длине равную длине кривой линии. Задача опять восходит к грекам.

Перейти на страницу:

Похожие книги

Опасная идея Дарвина: Эволюция и смысл жизни
Опасная идея Дарвина: Эволюция и смысл жизни

Теория эволюции посредством естественного отбора знакома нам со школьной скамьи и, казалось бы, может быть интересна лишь тем, кто увлекается или профессионально занимается биологией. Но, помимо очевидных успехов в объяснении разнообразия живых организмов, у этой теории есть и иные, менее очевидные, но не менее важные следствия. Один из самых известных современных философов, профессор Университета Тафтс (США) Дэниел Деннет показывает, как теория Дарвина меняет наши представления об устройстве мира и о самих себе. Принцип эволюции посредством естественного отбора позволяет объяснить все существующее, не прибегая к высшим целям и мистическим силам. Он демонстрирует рождение порядка из хаоса, смысла из бессмысленности и морали из животных инстинктов. Принцип эволюции – это новый способ мышления, позволяющий понять, как самые возвышенные феномены культуры возникли и развились исключительно в силу биологических способностей. «Опасная» идея Дарвина разрушает представление о человеческой исключительности, но взамен дает людям возможность по-настоящему познать самих себя. Книгу перевела М. Семиколенных, кандидат культурологии, научный сотрудник РХГА.

Дэниел К. Деннетт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
История Византии
История Византии

Византийская империя. «Второй Рим».Великое государство, колыбель православия, очаг высокой культуры?Тирания, безжалостно управлявшая множеством покоренных народов, давившая в подданных всякий намек на свободомыслие и жажду независимости?Путешественники с восхищением писали о блеске и роскоши «Второго Рима» и с ужасом упоминали о жестокости интриг императорского двора, о многочисленных религиозных и политических распрях, терзавших империю, о феноменально скандальных для Средневековья нравах знатных византийцев…Византийская империя познала и времена богатства и могущества, и дни упадка и разрушения.День, когда Византия перестала существовать, известен точно: 29 мая 1453 года.Так ли это? Что стало причиной падения Византийской империи?Об этом рассказывает в своей уникальной книге сэр Джон Джулиус Норвич.

Джон Джулиус Норвич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература