Читаем Сборник основных формул по химии для ВУЗов полностью

Для некоторого электролита, распадающегося в растворе на ионы в соответствии с уравнением:

АаВb ↔ аАx- + bВy+

Для бинарного электролита:

Для разбавленных растворов можно считать, что (1 – α) = 1 и К ≈ α2С.

– закон разбавления Оствальда: степень диссоциации слабого электролита возрастает с разбавлением раствора.

Активность растворенного вещества – эмпирическая величина, заменяющая концентрацию, – активность (эффективная концентрация) а, связанная с концентрацией через коэффициент активности f, который является мерой отклонения свойств реального раствора от идеального:

а = fC; а+ = f+С+; а_ = f_C_.

Для бинарного электролита:

– средняя активность электролита;

– средний коэффициент активности.

Предельный закон Дебая-Хюккеля для бинарного электролита: lg f = -0,51z 2I ½, где z – заряд иона, для которого рассчитывается коэффициент активности;

I – ионная сила раствора I = 0,5Σ(Сiri2).

<p>4. Электропроводность растворов электролитов</p></span><span>

Проводники I рода – металлы и их расплавы, в которых электричество переносится электронами.

Проводники II рода – растворы и расплавы электролитов с ионным типом проводимости.

Электрический ток есть упорядоченное перемещение заряженных частиц.

Всякий проводник, по которому течет ток, представляет для него определенное сопротивление R, которое, согласно закону Ома, прямо пропорционально длине проводника l и обратно пропорционально площади сечения S; коэффициентом пропорциональности является удельное сопротивление материала ρ – сопротивление проводника, имеющего длину 1 см и сечение 1 см2:

Величина W, обратная сопротивлению, называется электропроводностью – количественной меры способности раствора электролита проводить электрический ток.

Удельная электропроводность χ(к) – электропроводность проводника I рода длиной 1 м с площадью поперечного сечения 1 м2 или электропроводность 1 м3 (1 см3) раствора электролита (проводника II рода) при расстоянии между электродами 1 м (1 см) и площади электродов 1 м2 (1 см2).

Молярная электропроводность раствора) λ – электропроводность раствора, содержащего 1 моль растворенного вещества и помещенного между электродами, расположенными на расстоянии 1 см друг от друга.

Молярная электропроводность как сильных, так и слабых электролитов увеличивается с уменьшением концентрации (т. е. с увеличением разведения раствора V = 1/C), достигая некоторого предельного значения λ0), называемого молярной электропроводностью при бесконечном разведении.

Для бинарного электролита с однозарядными ионами при постоянной температуре и напряженности поля 1 В • м-1:

λ = αF(u + + и¯),

где F – число Фарадея; и+, и¯ – абсолютные подвижности (м2В-1с-1) катиона и аниона – скорости движения данных ионов в стандартных условиях, при разности потенциалов в 1В на 1 м длины раствора.

λ+ = Fu+; λ¯ = Fu¯,

где λ+, λ¯ – подвижности катиона и аниона, Ом • м2 • моль-1 (Ом • см2 • моль-1).

λ = α(λ+ + λ¯)

Для сильных электролитов α ≈1 и λ = λ+ + λ¯

При бесконечном разбавлении раствора (V → ∞, λ+ → λ+, λ¯ → λ¯, α → 1) как для сильного, так и для слабого электролитов λ= λ+ – λ¯ – закон Кольрауша: молярная электропроводность при бесконечном разведении равна сумме электролитических подвижностей λ+, λ¯ катиона и аниона данного электролита.

Ионы Н+ и OH¯ обладают аномально высокой подвижностью, что связано с особым механизмом переноса заряда этими ионами – эстафетным механизмом. Между ионами гидроксония Н3O+ и молекулами воды, а также между молекулами воды и ионами OH¯ непрерывно происходит обмен протонами по уравнениям:

Н3O+ + Н2O → Н2O + Н3O+

Н2O + OH¯ → OH¯ + Н2O

<p>5. Электрохимические процессы</p></span><span><p>5.1. Электродные потенциалы. Гальванические элементы. ЭДС</p></span><span>

При соприкосновении двух химически или физически разнородных материалов (металл 1 (проводник I рода) – металл 2 (проводник I рода), металл (проводник I рода) – раствор соли металла (проводник II рода), раствор электролита 1 (проводник II рода) – раствор электролита 2 (проводник II рода) и т. д.) между ними возникает двойной электрический слой (ДЭС). ДЭС является результатом упорядоченного распределения противоположно заряженных частиц на границе раздела фаз.

Образование ДЭС приводит к скачку потенциала φ, который в условиях равновесия металл (проводник I рода) – раствор соли металла (проводник II рода) называется галъвани-потенциалом.

Перейти на страницу:

Все книги серии Краткий справочник студента

Похожие книги

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей
Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

«Сумма биотехнологии» Александра Панчина — это увлекательный научно-популярный рассказ о генетически модифицированных организмах (ГМО), их безопасности и методах создания, а также о других биотехнологиях, которые оказались в центре общественных дискуссий. Из книги вы узнаете все самое интересное о чтении молекул ДНК, возможности клонирования человека, создании химер, искусственном оплодотворении и генетической диагностике, о современных методах лечения наследственных заболеваний с помощью генной терапии, о перспективах продления человеческой жизни и победы над старением. В то же время в книге подробно разобраны популярные в обществе мифы, связанные с внедрением биотехнологий в практику, и причины возникновения ложных опасений.

Александр Панчин , Александр Юрьевич Панчин

Научная литература / Химия / Биология / Прочая научная литература / Образование и наука