имеет решение
Существует множество других алгебраических чисел: так, число √2 является иррациональным и является корнем уравнения
В 1874 году Кантор был еще молод и не страдал от психических расстройств. В одной из своих работ он доказал, что множество алгебраических чисел (будем обозначать его
При этом каждое из этих множеств строго больше последующего:
Мир чисел огромен. Пока что мы видели лишь его часть, которая является счетной.
Возможно, лучший способ рассказать о числах — это рассмотреть подробно их десятичную запись. Исследуем подробно множество всех десятичных чисел. Вообще говоря, десятичное число вида
34658,124796
является лишь формой записи следующего выражения
3∙104 + 4∙103 + 6∙102 + 5∙101 + 8∙100 + 1∙10-1 + 2∙10-2 + 4∙10-3 + 7∙10-4 + 9∙10-5 + 6∙10-6
Цифры слева от запятой соответствуют положительным степеням 10, справа от запятой — отрицательным степеням. Вспомним, что
Десятичная система счисления — это позиционная система счисления по основанию 10. Это лишь способ записи чисел, но сколь удобный способ! Это поистине великое достижение человечества.
Этот голландский ученый родился в бельгийском городе Брюгге. Он был военным инженером, занимался музыкой, физикой, математикой и бухгалтерией. Он вошел в историю как изобретатель двойной бухгалтерской записи, которая в значительной мере способствовала прогрессу в экономике и торговле. Но его вклад в математику еще важнее: в своем труде De Thiende («Десятая») он представил десятичную форму записи чисел. Эта система была слишком сложна, поэтому широкое распространение получили более поздние версии, например вариант, предложенный Джоном Непером,
* * *
Десятичная дробь может быть конечной или бесконечной. Ниже приведен пример для обоих случаев:
1,234567890101112131415161718192021223242526…
127,789564.
Первое число — бесконечная десятичная дробь. Вторая дробь также содержит бесконечное количество знаков после запятой, но в ином виде:
127,789564 = 127,789564000000000000000000…
Фактически мы можем записать число 127,789564 более «сложным» способом:
= 127,789563999999999999999999…
Тем не менее в этих случаях речь идет о конечной десятичной дроби. Простейшие десятичные числа — это натуральные числа (
11/7 = 1,571428571428571428…,
где период, или множество повторяющихся цифр, всегда равен 571428. Иногда период имеет гигантские размеры, но это не означает, что десятичное число будет иметь бесконечное количество знаков — они будут повторяться бесконечное число раз.
В этот момент неизбежно возникает вопрос: если периодические дроби соответствуют рациональным числам, то как быть с непериодическими десятичными дробями? Все очень просто: они являются не рациональными, а иррациональными.